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Bending and twisting of soft materials by non-homogenous swelling
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Soft materials such as biological tissues and gels undergo morphological changes, motion, and

instabilities when subjected to external stimuli. We examine how thin elastic plates undergo rapid

bending and buckling instabilities after non-homogenous exposure to a favorable solvent that swells the

network. An unconstrained beam bends along its length, while a circular disc bends and buckles with

multiple curvatures. In the case of a disc, a large-amplitude transverse travelling wave rotates

azimuthally around the disc. We provide theoretical interpretations inspired by the complementary

thermal expansion problem of transient shape changes triggered by non-homogenous time-dependent

heating, which allows collapse of time-dependent swelling data onto universal curves. Control of

dynamical, swelling-induced shape changes provides new directions for the utilization of soft materials.
1 Introduction

Tissues can exhibit residual internal stresses induced by growth,1–5

and generate elastic deformations to move in response to light or

touch,6–8 curl articular cartilage,9 aid in seed dispersal,10,11 and

actuate hygromorphs, such as pine cones.12 Understanding the

dynamics of such osmotically driven movements and the influ-

ence of geometry and boundary conditions, is crucial to the

controlled deformation of soft materials.4,13–17 For example, the

steady permeation of fluid through rigid porous networks18 and

the equilibrium swelling of crosslinked elastic networks are well

studied.19,20 A specific focus has been the equilibrium shapes that

hydrogels adopt under a prescribed state of stress.4,21 Research

has also focused on the kinetics of swelling of soft elastomers and

gels16,22–24 and the relaxation of gels during bending25 and

indentation.26 Very recently, several papers have focused on

coupling equilibrium swelling information with dynamic defor-

mations for liquid crystal elastomers, rubber, and paper.27–30 In

this paper, we study the impact of material geometry and non-

homogenous swelling on the dynamics of deformation of soft

materials.

We present the time-dependent shape changes and dynamic

instabilities that occur by non-homogenously swelling an elas-

tomer. In particular, we examine the dynamics as thin elastic

plates undergo rapid bending (Fig. 1a) when swollen with

a favorable solvent (e.g. hexane [hex], silicone oil [Si]). The

material recovers its original shape at longer times when the

solvent has spread uniformly throughout the sample; at much

longer times the solvent may evaporate, as in the case of hexane,

to leave a uniform solvent-free state. While uniform swelling of

a beam leads to a well-studied global deformation,19,20,25 large
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deformations can also occur over small regions of the beam in

response to localized stimuli. For example, a beam swollen at

spatially distributed locations on the top and bottom surfaces

adopts an s-shape (Fig. 1b). The inverse is also possible, as

solvent-induced swelling can flatten an initially curved beam

(Fig. 1c). Developing a quantitative description of the magnitude

and timescale of the deformation of soft materials will be

important for understanding of the dynamics of morphogenesis

in growing soft tissues,3 and will contribute to the technology of

advanced elastic materials for stretchable electronics, soft

robotics, adaptable shape change, and the direction and control

of fluid flow.
2 Bending of a slender beam

2.1 Non-homogenous swelling of a quasi one-dimensional beam

First, we study the time-dependence for the simplest case of

a slender beam in response to a non-homogenous strain (Fig. 1a).

The top surface of a crosslinked polydimethylsiloxane (PDMS)

beam with thickness h and length L was swollen with a favorable

solvent by placing a small drop (30 mL) at the center of the beam.

Bending is characterized by the radius of curvature R, or its

inverse k1, measured at the midpoint of the centerline (Fig. 1d).

Equilibrium swelling causes the elastomer to expand to an

experimentally measured maximum strain, 3m z 0.2–0.3, which

is consistent with values reported in the literature.20 In our

experiments, the drop rapidly spreads over the top surface and

slowly is absorbed into the elastomer. As the top of the beam

expands the remainder of the beam is required to bend to

accommodate this deformation. The beam bends as the fluid

permeates through the thickness of the beam until it reaches

a maximum curvature when the imbibition front has reached the

approximate centerline, after which the beam relaxes, slowly

bending back to its original shape.
This journal is ª The Royal Society of Chemistry 2011
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Fig. 1 Global and localized bending of beams swollen non-homogenously with a favorable solvent. a. A narrow beam (h z 1 mm, w z 0.5 mm,

L z 20 mm) with free edges is swollen non-homogenously by placing a droplet of hexane on one side. The expansion of the top surface of the beam

causes the material to initially bend sharply and then relax back to its initial shape. b. A beam swollen with hexane at two locations on opposite faces

leads to localized bending of opposite curvatures. c. An initially curved beam bends and decreases its curvature when swollen with a favorable solvent. d.

A schematic of a beam expanding and subsequently bending, with definitions of the geometric variables for describing the deformations.
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We measured the average curvature of the centerline of the

beam as a function of time (Fig. 2 a, b) for samples of various

thickness and using two different solvents with different viscos-

ities (mhex ¼ 0.3 cSt and mSi ¼ 1 cSt) that swell PDMS.20 The

qualitative features of the dynamics are the same for beams of

varying thickness and different fluid properties. The raw data

from Fig. 2b illustrates that experiments span several orders of

magnitude in timescale and nearly an order of magnitude in

curvature for the fluids and thicknesses studied. It is important to

note that solvent evaporation occurs over a timescale longer than

the deformation dynamics presented, i.e. the dynamics from
Fig. 2 Dynamics of beam bending. a. Images of a beam swollen with silicone o

versus time for beams of various thicknesses swollen with different solvents. c

by the diffusion time, s, based on the analogy with the thermal bending of bea

(4), with time scaled by the poroelastic time, sp. The data for a range of beam

that is predicted by eqn (4).

This journal is ª The Royal Society of Chemistry 2011
swelling with hexane occur within 1–2 s, while evaporation of the

same volume of solvent occurs over x 30 s. This evaporation

occurs over a longer time when the solvent is within the elasto-

meric network.
2.2 Analogy to thermal bending of beams

To understand these trends produced by non-homogenous

swelling of an elastomer, it is helpful to draw an analogy to the

thermal bending of beams, e.g. time-dependent bending by

heating a narrow beam on one side (x3 ¼ h/2) with temperature
il (h¼ 1 mm) bending to its maximum curvature. b.Raw data of curvature

. A plot of normalized beam curvature,
k1h

3mð1þ nÞ, versus time normalized

ms. d. The raw data from b is normalized based on the parameters in eqn

thicknesses and fluid properties collapses to a qualitatively similar profile

Soft Matter, 2011, 7, 5188–5193 | 5189
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increment,31–33 DT. The time scale, s, for the swelling front to

propagate across the beam is h2/D, where D is the characteristic

diffusivity. This analogy is useful due to the empirically observed

diffusive-like nature of the fluid imbibing into the elastomer.16

The thermal gradient is determined by the unsteady, transverse

diffusion of temperature, T, from the top surface of a beam,

D
v2T

vx23
¼ vT

vt
, where x3 is the transverse dimension. Assuming the

bottom surface of the beam is perfectly insulating, the tempera-

ture distribution is:

T

DT
¼ 1�

XN
n¼0

2

ln
sin

�
ln

�
1

2
� x3

h

��
e�l2nt=s; (1)

where ln ¼ ð2nþ 1Þp
2

. We treat the beam as a slender body, and

assume that the dominant strains are along the x1 axis, and relate

the swelling induced bending moment to the curvature, k1, which

yields:

k1 ¼ 12

h3

ðh=2
�h=2

31ðx3Þx3dx3; (2)

where O(1) factors of the Poisson’s ratio have been neglected

since these depend on details of the transverse strain distribution.

Using the diffusion of temperature to calculate the thermally

induced strain, aDT, where a is the thermal expansion coeffi-

cient, the normalized beam curvature becomes:

k1h

aDT
¼ �12

XN
n¼0

e�l2nt=s

 
ln � 2ð�1Þn

l3n

!
: (3)

The first few terms for the curvature from this calculation are:

k1h

3m
¼ 1:33e

�
p2t=s
4 � 0:770e

�
9p2t=s

4 þ. (4)

where the maximum strain is 3m ¼ aDT for this thermal analogy,

and the expression for k1 is expected to be valid for times not too

small. The two exponentials dictate that the beam will bend

rapidly to a maximum curvature on the time scale s, before

slowly bending back to its original, flat shape. The normalized

beam curvature is plotted as a function of t/s in Fig. 2c.

In the case of our swelling experiments with an elastic gel, the

effective diffusivity22 is Dz Ek/m, where E is the elastic modulus

(E ¼ 106 Pa) and k is the permeability of the material34

(k z 10�18 m2 s�1). These quantities define the poroelastic time:

sp ¼ mh2/kE. (5)

The normalized beam curvature, kh/3m is plotted versus t/sp, in
Fig. 2d, which demonstrates how the non-homogenous swelling

dynamics can be collapsed across several orders of magnitude in

time and curvature. The beam rapidly reaches its maximum

curvature, kmax at a time z 2sp, while the relaxation occurs

slowly, qualitatively similar to the thermal response indicated in

eqn (4). Relaxation for samples swollen with hexane occurs

slightly faster than for the silicone oils, which we believe is due to

evaporation of the solvent, which is negligible for the silicone oils

over these time scales. Since 3m, the maximum strain in the elastic

gel, is obtained from long-time equilibrium measurements, this

likely overestimates the strain in the partially swollen beam,
5190 | Soft Matter, 2011, 7, 5188–5193
which rationalizes why the data in Fig. 2d has a vertical scale less

than unity. It is important to note that the thermal analogy is

only presented to provide a qualitative description of our

dynamical phenomena and a rational introduction for scaling the

data to produce collapse onto a universal curve. Thermal equi-

librium in a metal is reached instantaneously (i.e. thermal

expansion is caused by a change in interatomic distance) while

the timescale for a gel or elastomer to reach equilibrium is much

slower. Consequently, a quantitative collapse between the two

phenomena should not be expected.16
3 Circular discs

3.1 Bending and bifurcation

Having developed an understanding of the dynamic response for

a quasi-one-dimensional beam in response to non-homogenous

strain, we studied the dynamics of a quasi-two-dimensional

geometry, i.e. a circular disc. The discs of thickness h and radius

a are initially axisymmetric, and their deformation at any instant

is characterized by two principle curvatures, k1 and k2, which are

measured orthogonal to each other via image analysis. A drop of

hexane placed on the surface of a circular disc spreads rapidly

and causes the disc to swell and bend. First, we report the time-

dependence of the curvatures by scaling time with sp. Upon

swelling, the disc initially bends with k1¼ k2 (Fig. 3 a-i and ii). As

swelling continues, a bifurcation occurs and the principle

curvatures become unequal with one growing in magnitude and

the other decreasing (Fig. 3 a and b). Following the bifurcation,

the orientations of the principle curvature axes change continu-

ally in time, as discussed below. At long times the disc recovers its

equilibrium flat shape.

The experimental shapes of bifurcated circular discs presented

in this paper can be explained via the von K�arm�an plate theory,

which predicts that a disc subjected to a strain gradient along the

x3 direction buckles symmetrically before bifurcating into two

positive, but distinct curvatures.33,35 By continuing the analogy

with the thermal swelling and bending of a beam discussed

above, the approximate shape of a plate is described by two

curvatures, k1 and k2, with mid-plane displacements in the

principle directions of:

u1 ¼ A1x1+A2x
3
1 + A3x1x

2
2 (6a)

u2 ¼ B1x2+B2x
3
2 + B3x2x

2
1 (6b)

u3 ¼ k1x
2
1

2
þ k2x

2
2

2
; (6c)

where Ai and Bi are six parameters selected to minimize the

potential energy of the plate33,35 The complexity in coupling the

spatial and temporal parameters for the axisymmetric circular

disc makes it difficult to solve the von K�arm�an plate equations

for both short times,
t

s
� 1, and long times,

t

s
[1. In order to

capture the most significant qualitative features of the time-

dependent response in the experiments, e.g. the bifurcation and

slow relaxation, we approximate the thermal strains by a simple

function, f ðt=sÞzA
t

s
e
�B

ffiffiffi
t

s

r
, which represents the beam
This journal is ª The Royal Society of Chemistry 2011
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Fig. 3 Bending and bifurcation of circular discs. a. Optical images and schematic as a circular disc buckles axisymetrically, i.e. k1¼ k2, before bifurcating

with two distinct, positive curvatures k1 s k2. b. A plot of normalized disc curvature versus time for a circular disc non-homogenously swollen with

hexane. A bifurcation occurs causing the two curvatures to differ in magnitude (dashed line added to guide the eye). c. Normalized curvature vs.

normalized time is determined by minimizing the total strain energy of the disc. Our experimental data is in very good agreement with this theory. d.

Images of the circular disc as it relaxes back to its initial, flat state.
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response in Fig. 2c for all
t

s
, where A ¼ 27 and B ¼ 6.5. Then,

minimizing the total strain energy for the disc leads to two

algebraic equations describing the principle curvatures:

k1hnþ k2h
h
1� ða=2hÞ4ðk1hÞ2

�
n2 � 1

�i þ 3m
16

ð1þ nÞ f ðt=sÞ ¼ 0

(7)

k2hnþ k1h
h
1� ða=2hÞ4ðk2hÞ2

�
n2 � 1

�i þ 3m
16

ð1þ nÞ f ðt=sÞ ¼ 0

(8)

where a is the disc radius, and n is Poisson’s ratio.35 When solving

for the principle curvatures as a function of time, three regimes

emerge (Fig. 3c): i. Below a bifurcation strain the disc bends

axisymmetrically (k1 ¼ k2), similar to a hemispherical lens, then

ii. above a bifurcation strain, two different, positive curvatures

exist, and iii. at long time, when the entire system approaches an

isothermal state, the disc relaxes back to the initial, flat state

(k1,k2 / 0). We present a qualitative plot of the curvatures as

a function of the normalized time from this thermal analogy in

Fig. 3c. Our experimental observations (Fig. 3b), including

bending, the bifurcation, and slow relaxation, are in excellent

qualitative agreement with the time-dependent thermal analogy

for the bending and buckling of a circular disc.
3.2 Twisting: propagation of an azimuthal buckle wave

As indicated above, after the disc bifurcates, generating two

different curvatures, the orientations of the principle axes rotate

azimuthally around the disc. Fig. 4a shows a top-view of

a swollen, buckled circular disc with a shape that appears to
This journal is ª The Royal Society of Chemistry 2011
rotate in a clockwise manner. As the buckle rotates, the material

points do not translate in the azimuthal direction. To emphasize

that the disc experiences deformation in the form of a travelling

wave and only deforms in the vertical direction during the

dynamic buckle rotation, we mark several points on the disc with

small pins and observe their displacements (Fig. 4b). The disc

remains symmetric about its two principle curvatures, as shown

in Fig. 4c, where we plot the position of two points on the disc

initially separated by q¼ p as a function of time. Buckle rotation

begins to occur approximately when the critical strain for

bifurcation is reached and increases until k1 reaches a maximum

curvature. The directionality of this rotation appears arbitrary

across numerous experiments. For example, Fig. 4d-i shows q

versus time plots for the dynamics to illustrate that the travelling

wave can rotate entirely in one direction, the opposite direction,

or back-and-forth (Fig. 4d-ii).

To the best of our knowledge, experimental observation of this

buckle rotation instability is new and will require further inves-

tigation, both experimentally and theoretically to understand

and make predictions about the phenomenon. Existence of disc

rotation due to the nonlinear deformation of a disc with

a differential strain across its thickness has been predicted

numerically by Freund.35 To rationalize that the second buckling

mode, where k1 s k2, has no preferential configuration, we note

that there are numerous orientations of the two principle

curvatures that are energetically favorable. Any perturbation

may cause the azimuthal shape of the disc to undergo reor-

ientations to other energetic minima. Freund noted that a small

difference in strain between the x1 and x2 directions can induce

stable deformation beyond the point of bifurcation.35 In our

experiments, due to the dynamics of imbibition and swelling,
Soft Matter, 2011, 7, 5188–5193 | 5191
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Fig. 4 Twisting of circular discs a. The formation of unstable bucklingmodes causes a travelling wave to propagate around the disc. Images from the top

of a disc show it twisting clockwise. b. Images of a marked disc (enhanced with points to guide the eye) illustrate the movements of a fixed point on the

disc. c. A plot of the position of two points on a disc initially separated by q¼p as a function of time. The disc is symmetric during buckle rotation. d. i. A

plot of q versus time and ii. q in polar coordinates illustrates the disc’s arbitrary directionality.
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solvent continues to permeate vertically and laterally within the

disc. The mechanical coupling between stress and the amount of

solvent absorbed may lead to a perturbation, or mismatch strain,

significant enough to cause a travelling buckle wave to propagate

azimuthally around the disc.
4 Conclusions

In conclusion, we have presented a study on the dynamical

deformation of soft materials in response to non-homogenous

strains produced by swelling the material with a favorable

solvent. We have shown how controlled, reversible shape

changes are possible. Using an analogy with the thermal bending

of beams and discs, we qualitatively describe the time-dependent

deformation. The theory provides normalized parameters for the

curvature dynamics and the typical timescales. For the case of

a circular disc, the theory captures the bifurcation and relaxation

that occurs when multiple curvatures are accessible. Upon

bifurcation, a rotating buckle wave was observed with an arbi-

trary direction, which is a new dynamical phenomenon that

requires further experimental and theoretical study across

a variety of materials and geometries. Although recent investi-

gations of osmotically swollen materials have concerned the

material’s final equilibrium shape, our observations, in particular

the rotation travelling wave on a disc, emphasize the importance

of the dynamical pathways and potential instabilities that have

not previously been considered. Further exploration of the

dynamics of stressed, elastic materials, as introduced here in

unconstrained geometries, should be of significant importance in

fields ranging from morphogenesis to adaptable smart materials,
5192 | Soft Matter, 2011, 7, 5188–5193
and future studies should also incorporate the effects of

confinement.
Experimental section

PDMS preparation and swelling

A 10 : 1 (w/w) degassed mixture of polydimethylsiloxane (Syl-

gard 184TM) prepolymer and curing agent was molded into

slender beams (w x 0.5 mm) and circular discs (E ¼ 1 MPa,

nz 0.5) of various length and thickness, and crosslinked at 65 �C
overnight. The PDMS films were placed on, but not adhered to,

metal posts with a diameter of 1.7 mm. The ability for the free-

standing elastomer to deform equally when swollen from above

and below, as shown in Fig. 1b, indicates that the post it rests on

has no quantifiable impact on the local curvatures. The solvents

hexane and silicone oil were chosen due to their nearly identical

thermodynamic solubility parameter to PDMS:20 d z 7.3 cal1/2

cm�3/2. A droplet (V ¼ 30 mL) of either hexane (Sigma-Aldrich)

or silicone oil (Sigma-Aldrich), was placed on the top surface of

the PDMS film via a Harvard Apparatus PHD 2000 syringe

pump.
Imaging and characterization

The deformation of the slender beams swollen with hexane was

imaged with a Phantom V7.3 high-speed camera with a macro

lens (f¼ 105 mm) at 100 f ps. Slender beams swollen with silicone

oil were imaged using a Nikon D90 and macro lens at 0.8 f ps.

The deformation of the circular disc was imaged by two

orthogonal high-speed cameras (Phantom V7.3 and Phantom V9

with macro lenses) at 100 f ps. Image analysis was performed
This journal is ª The Royal Society of Chemistry 2011
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with ImageJ and custom Matlab code that isolated the object’s

shape, allowing the relevant curvatures to be measured as

a function of time.
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