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a b s t r a c t

Biogenic single crystals with complex shapes are believed to be generated by the crystallization of an
amorphous precursor. Recent biomimetic experiments on the crystallization of calcite via amorphous-
to-crystalline transition point to the fact that the transformation kinetics may be controlled by the micro-
pattern and the macroscopic shape of the amorphous precursor phase. Here we analyse a simple kinetic
model, based on thermodynamic considerations, showing that the presence of cavities in the micropat-
terned precursor phase might interfere with the transformation process and control its kinetics. The size
of the cavities couples to the total surface energy and, hence, to crystal nucleation and growth, while the
spacing of the cavities, as compared to the typical diffusion path, controls the possible nucleation of com-
peting crystals.

� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Many biological crystals are grown by the transformation of
amorphous precursor phases [1–8]. For example, it has been
shown that amorphous calcium carbonate (ACC) transforms into
calcite or aragonite in the skeletons of echinoderms and molluscs,
and that amorphous iron oxides transform into magnetite in chiton
teeth. The advantage of this type of processing is that it apparently
allows the growth of single crystals with very complex shapes
[9,10]. It has also been argued that amorphous precursor phases
substantially modify the nucleation process as several subcritical
nuclei may coexist, survive and eventually coalesce within a single
amorphous precursor particle [11–17]. Recently, it has become
possible to stabilize amorphous calcium carbonate as a precursor
of calcite crystals in laboratory conditions and to initiate controlled
crystallization of large single crystals [17–21].

One of the challenges in understanding the kinetics of this trans-
formation is to rationalize the effect of the volume change between
ACC and calcite, which ismuch denser. Hence, crystallization of ACC
is not possible without considerable mass transport at the nano-
and micrometer levels. It is quite surprising that the formation of
a large single crystal is actually possible under these conditions.

One would suspect that the negative volume jump from ACC to cal-
cite would disrupt the crystallization front and the remaining ACC
pool, making the growth of a single crystal difficult. Indeed, the for-
mation of polycrystalline calcite is observed when a large plate-like
ACC template transforms, even starting from a single artificial
nucleation site [18]. However, when the ACC template is pre-struc-
tured by a periodic array of holes (cavities) in the plate-like tem-
plate, a large single crystal may grow under similar conditions
[18,22]. As shown in Fig. 1, large single crystals with periodic arrays
of holes occur in natural systems and can be grown in the labora-
tory. The size and spacing of these holes seem to play a major role
in the kinetics of the crystallization process, since a single crystal is
formed only when the spacing of the holes is sufficiently small. The
size of the holes has been observed to increase during crystalliza-
tion, clearly compensating for the volume decrease fromACC to cal-
cite. All these experimental observations suggest an important role
of geometric constraints in the transformation process from an
amorphous precursor to a single crystal, but the physical nature
of this influence is still uncertain.

2. Problem formulation

In this paper, we carry out theoretical investigations of the
influence of geometric constraints on a phase transformation pro-
cess with a considerable volume jump. The hypothesis that cavities
in the precursor reduce the mechanical stresses arising from the
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volume change [18] is not likely to be true, because the presence of
holes leads to stress concentration and increases the risk of failure
initiation, rather than preventing the disruption between the par-
ent ACC phase and the crystal [23]. To avoid this, the parent phase
has to be sufficiently ductile to allow for accommodation of the
deformation without stress concentrations. The latter condition is
fulfilled for the water-rich ACC phase, which is quite soft and
deformable compared to calcite. Moreover, recent experiments
on the controlled crystallization of ACC show that, indeed, ACC
rearranges considerably around growing crystals to form halos
[19].

Here we analyse the possible influence of holes on the kinetics
of the transformation of ACC to calcite within a simple theoretical
model. We find that the presence of cavities in the micron range
can inhibit calcite nucleation and promote the growth of a single
crystal from a sufficiently large artificial nucleus. We show that
the time required for the crystal surface to bridge the distance a
between two holes scales as a2, which needs to be compared to
the time for nucleation of a competing crystal. Hence, a single-do-
main crystal will only form when the distance between holes is
small enough to prevent secondary nucleation.

The model studied is (quasi-) two-dimensional, consisting of a
planar, perforated layer (with a large thickness d) of ACC with
the starting configuration shown in Fig. 2. The ACC layer contains
a periodic array of circular holes with radius qW and the initial ra-

dius qW0, distributed in a square lattice with the unit cell dimen-
sion of a. During a diffusive transformation process the phase
ACC transforms into crystalline calcite (CC) and liquid water (W).
The molar fractions, molar volumes and molar Gibbs energies of
individual phases are listed in Table 1.

3. Problem solution

We assume that, at the beginning of the phase transformation, a
calcite nucleus grows to an initially very small circle around the
centre with radius qC , while the holes increase their radius from
qW0 to qW in order to compensate for the decrease of the volume
of calcium carbonate during the transformation from the ACC to
the calcite phase. We postulate that the accommodation of the
transformation strain, arising from significant shrinking, can be
realized by the viscous behaviour of the ACC. Without this property
of the ACC, transformation stresses would accumulate at the inter-
face between calcite and ACC, which must lead either to a stopping
of the transformation or to a fracture of the specimen.

When the calcite crystal grows from 0 to qC and the holes grow
from qW0 to qW , we can write two conservation relations – one for
the calcite and one for the water.

The first one expresses the conservation of calcium ions, with x
being the molar fraction of water in ACC:

MC

d
¼ pq2

C

XC
¼ ð1� xÞMA

d
¼ ð1� xÞpq

2
C þ pq2

W � pq2
W0

XA
; ð1Þ

where it is assumed that MA moles of the amorphous phase is being
transformed into MC moles of calcite and that the layer thickness d
remains roughly unchanged during the crystallization (that is, the
mass redistribution is supposed to mainly occur within the plane
of the layer and not in the third dimension). This equation can be
transformed to

q2
W � q2

W0

q2
C

¼ XA

ð1� xÞXC
� 1 � a; ð2Þ

where the parameter a describes the relative volume decrease
when a given amount of calcium atoms transforms from ACC to cal-
cite. The quantities XA and XC are the molar volumes of ACC and
calcite (see Table 1).

The second conservation relation defines the total number MW

of moles of water which had to leave the amorphous phase during
the transformation process:

MW

d
¼ x

MA

d
¼ x

1� x
pq2

C

XC
: ð3Þ

The change DG in the total Gibbs free energy G (within the unit cell
in Fig. 2) due to the nucleation of a calcite crystal of size qC is given

Fig. 2. Sketch of the configuration of holes (W) and the calcite nucleus (CC) in the
ACC plate. The holes with radius qW (with qW0 being its initial value at the start of
crystallization) are arranged on a square lattice with spacing a. The radius of the
calcite nucleus is qC , and the distance from the centre of the calcite nucleus and of
the holes is rc and rW , respectively.

Fig. 1. (a) Scanning electron micrograph (SEM) of a part of the skeleton of a brittlestar Ophiocoma wendtii (Ophioroidea, Echinodermata). The entire structure (the mesh and
the array of microlenses) is composed of a single calcite crystal used by the organism for mechanical and optical functions [9]. (b) SEM of a sample micropatterned single
calcite crystal fabricated by transformation of an amorphous precursor. The holes were pre-existing in the precursor and grew during the transformation process [18].
Bar = 100 and 10 lm in (a) and (b), respectively.
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by a sum of the contributions from the bulk phases and from their
respective interfaces as

DG ¼ �MAgA þMCgC þMWgW þ 2pdðqCcC þ ðqW � qW0ÞcWÞ ð4Þ

(for definitions see Table 1). Using relations (1)–(3), we can elimi-
nate qW in the expression for DG and obtain:

DG=d ¼ �pq2
C ĝ þ 2p cCqC þ cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

W0 þ aq2
C

q
� qW0

� �� �
;

ĝ ¼ gA � ð1� xÞgC � x gW

ð1� xÞXC
P 0:

ð5Þ

The expression ĝ corresponds to the decrease in molar Gibbs energy
during the transformation. The energy difference DG=d must be po-
sitive to allow for crystallization. This expression neglects the
change of the ACC–water interface into a calcite–water interface
on the upper and lower sides of the slab. Taking this contribution
into account, ĝ would have to be replaced by ĝ þ 2ðcW � c0WÞ=d,
where c0W is the surface energy of the calcite–water interface. We
estimate ĝ to be in the order of 1.3 � 108 J m�3 [24]. This value is
obtained by using the following thermodynamic values reported
for calcite and the hydrated calcium carbonate mineral monohydro-
calcite (as we do not have good thermodynamic data for the
hydrated ACC): gA=ð1� xÞ ¼ �1537 kJ=mol and x ¼ 1=2 for mono-
hydrocalcite, gC ¼ �1235 kJ=mol for calcite, gW ¼ �307 kJ=mol for
water at 25 �C [24] and XC ¼ 3:69 10�5 m3 =mol. (Note that, taking
ikaite instead of monohydrocalcite for this estimate, one would find
ĝ to be in the order of 3 � 108 J m�3). We do not have good data for
cW , but the calcite–water interface energy has been reported to be
of the order of c0W ¼ 0:1 Jm�2 [25]. Taking cW � c0W to be of the same
order, then 2ðcW � c0WÞ=d will be much smaller than ĝ for layer
thicknesses in the micron or millimetre range. It is therefore
sufficient to consider ĝ in Eq. (5).

The analysis of this expression (5) also suggests that the pres-
ence of the holes adds surface energy (which depends differently
on qC than the ĝ term) to the system and therefore reduces the
growth rate of a nucleus. The calcite nucleus will grow if its radius
is larger than the value of qC that minimizes DG. To get a simple
understanding of Eq. (5), we first assume that the interface energy
between calcite and ACC is much lower than that between ACC and
water and, if we set cC to zero in the derivative of Eq. (5) with re-
spect to qC , one finds that the calcite nucleus can grow if

q2
W0 þ aq2

C P ðacW=ĝÞ2 ¼ ~q2: ð6Þ

As a consequence, an initial hole that is large enough (the critical
value being qW0 > ~q) does not hinder the growth of the calcite nu-
cleus. In order to get a first approximation for qW0, we take cW �
0.1 J m�2 and ĝ � 1.3 � 108 J m�3. With the volume increase a being
of the order of 1 (a = 0.33 for monohydrocalcite and a = 2 for ikaite),
the order of magnitude for ~q is then about 1 nm. This is quite small
and, under such circumstances, the initial hole will not change the
growth behaviour of the calcite nucleus. The situation would, how-
ever, be completely different in a setting where the ACC were stabi-
lized (e.g. by some additive) so that the driving force for
crystallization, ĝ, would be reduced to, say, 106 J m�3 or less. Then
the critical size for the initial hole would be of the order of microm-

eters and the growth of the calcite nucleus would be strongly influ-
enced by the presence of the holes.

One may imagine two scenarios:

(1) qW0 > ~q: under these conditions, the initial holes in the ACC
layer do not essentially influence the growth of the calcite
nucleus (except for a slight reduction of the driving force ĝ).

(2) qW0 < ~q: under these conditions, the holes in the structure
are hindering the growth of calcite nuclei smaller thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~q2 � q2
W0Þ=a

q
. Typically this value will be of the same

order of magnitude as ~q, which means that calcite nucle-
ation will effectively be suppressed if ~q is of the order of
micrometers. Starting from a single (sufficiently large)
nucleus, this situation might favour the growth of a single
crystal during the crystallization of ACC.

To obtain some information about the transformation kinetics,
one needs to consider that water must be transported by diffusion
in ACC from the site where calcite transformation occurs to the
interfaces. This is sketched in Fig. 3. Depending on the distance
of the transformation front to the nearest hole in relation to the
slab thickness, the water flux will be predominantly to the hole
or to the surface above and below. Viscous flow then drives the cal-
cium carbonate in the opposite direction. Typically, the calcite
crystal grows until all the calcium carbonate present in the near
neighbourhood has been consumed. For isolated nuclei, this appar-
ently leads to circular regions around each calcite crystal where
ACC has been depleted [19]. In particular, if there are no holes in
the structure, exchange is only possible with the upper and lower
surface. However, if the a/d ratio is small enough, diffusion will be
mostly in-plane, transporting water from the transformation front
into the hole. This is the situation considered in our model.

Assuming that there is a simplified field of diffusive flux of
water consisting of two overlapping radial fields (see Fig. 2), and
that there is no water in the calcite phase and no water at the hole
interface (water is getting out of the solid phase at the hole), we
can derive simple solutions for the fluxes in terms of 1/distance
(specifically, see e.g. Section 3 of Ref. [26]):

jC ¼ _qC
x
XA

qC

rC
and jW ¼ _qW

x
XA

qW

rW
: ð7Þ

Table 1
Definition of thermodynamic quantities for the different phases (columns 2–4) and of the interfaces between water and ACC and between calcite and ACC (last two columns).

Phase Bulk properties Interface properties

Molar fraction H2O Molar volume (m3 mol�1) Molar Gibbs energy (J mol�1) Interface energy (J m�2) Radius (m)

Water 1 XW gW cW qW

ACC x XAðxÞ gA
Calcite 0 XC gC cC qC

Fig. 3. Water flux from the transformation front to the specimen surface.
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With these fluxes, we can calculate the total energy dissipation
from diffusion (according to Section 3 and Appendix B of Ref.
[27]) as

Q=d ¼
Z a=2

qc

j2C
AC

2prC drC þ
Z a=2

qW

j2W
AW

2prW drW ; with

AC ¼ AW ¼ xDW

XARgT
; ð8Þ

where Rg is the gas constant, T is the temperature, DW is the diffu-
sion coefficient of water in ACC, and the quantities AC and AW are
the ‘‘bulk” mobilities of water. Using Eq. (2) in rate form,
qW _qW ¼ a qC _qC , the abbreviations y ¼ 2 qC=a and b ¼ 2 qW0=a,
and a renormalized time s ¼ DWt=a2, we get:

Q=d ¼ �pxRgTDW

16XA
_y2y2ð2 ln yþ a2 lnðb2 þ ay2ÞÞ; ð9Þ

where _y ¼ dy=ds. The kinetics of a system follows from Onsager’s
principle of maximizing the dissipation Q with the boundary condi-
tion Q ¼ � _G ¼ �D _G (for details on this principle, see Ref. [28], and
for applications on diffusion problems, see Ref. [27] and later Ref.
[29]). In the case at hand, for a fixed value of a we have only one
internal variable describing the system, namely qC , and its rate
_qC , which can immediately be found by equating � _G from Eq. (5)
with Q from Eq. (9). Neglecting the contribution from the surfaces
at sufficiently large times, we arrive at: � _G=d ¼ pDWy _y ĝ =2. Equat-
ing this with Eq. (9) leads to a differential equation in y which can
be analytically integrated to give:

Ks ¼ ð1þ a2Þy2 þ ab2 ln b2 � ½y2 ln y2 þ aðb2 þ ay2Þ lnðb2 þ ay2Þ�;
ð10Þ

where K ¼ 16XAĝ=ðxRgTÞ is a dimensionless constant. Fig. 4 shows
graphs of the function yðsÞ for various values of the parameters a
and b.

It is apparent from the growth kinetics shown in Fig. 4 that, at
fixed parameters a and b, the time for the crystal to grow towards
the next hole scales with a2 and is not linear in a. As a consequence,
we expect that, if the distance between holes becomes too large,
the time for the single crystal to grow becomes large compared
to the time needed for the nucleation of other crystals. If the first
crystal has grown to the neighbouring hole, the model can be ap-
plied again, with the nucleus now being at the advancing crystal
front. Therefore, the time for the crystal to grow over many holes
will scale linearly (not quadratically) with the number of holes.

The dependence on the initial size of the holes (that is, on the
dimensionless parameter b) is weak (see Fig. 4) as long as it is large
enough to overcome the surface tension (see the discussion after
Eq. (6)). The dependence on the volume jump a from ACC to calcite
is, however, important, with considerable retardation of the crys-
tallization when a gets larger.

4. Discussion and conclusion

Our theoretical analysis of the transformation process of the
micropatterned ACC to calcite shows that the existence of cavities
in a slab-like amorphous precursor has several profound conse-
quences for the crystallization kinetics:

(1) The cavitiesmay act as a sink for water to compensate for the
volume change during the crystallization of ACC into calcite.
This requires, however, that the thickness d of the precursor
slab should not be much smaller than the spacing between
cavities, so that a/d should be in the order of unity or less.

(2) In addition, small cavities hinder the growth of calcite nuclei.
In particular, if the driving force for crystallization is small
enough and the size of the cavities are below a critical thresh-
old, the nucleation of calcite is suppressed, and only one large
nucleus may grow (eventually into a single crystal).

(3) The transformation time scales with a2 and the calcite crys-
tal nucleus grows to a given size roughly as the square root
of time. This means that for large values of a the nucleation
rate of competing crystals from the same precursor might
also prevent the growth of a single crystal, even if condition
2 is fulfilled.

These mechanistic considerations are not only in agreement
with the existing experimental data [18], but also add a higher le-
vel of understanding of the crystallization process. Indeed, for a
slab thickness d of 10 lm and a spacing a between holes in the
same order, the formation of a single crystal from a single nucleus
has been found experimentally (Fig. 1). When the spacing awas in-
creased to 100 lm, however, polycrystalline calcite appeared [18]
(in agreement with the fact that a/d >> 1). The fact that the trans-
formation starts and progresses from a single nucleation site indi-
cates that heterogeneous nucleation is rather low (except at the
artificial nucleus) in this system. This fact justifies the current
modelling approach, which would not be valid in a situation where
heterogeneous nucleation (e.g. at walls or surfaces) dominates. In
particular, the above analysis confirms the importance of geomet-
ric constraints on the transformation kinetics and enables a ra-
tional design of the crystallization environment and space. It
provides the absolute value of the cavity spacing a, of its ratio to
the slab thickness d and of the cavity size required to optimize
the probability for the growth of a large single crystal from an
amorphous precursor. Using these parameters, one can generate
artificial crystals of arbitrary shapes similar to the convoluted
micropatterns of their biogenic single-crystalline counterparts.
However, one should be quite careful in extrapolating these con-
siderations to single crystal formation in biological organisms,
where the amorphous precursor phase is often anhydrous [8]. In
such situations, water diffusion cannot be the controlling mecha-
nism, but it is not unlikely that the diffusion of other ions or mol-
ecules stabilizing the precursor phase [30] could play a similar role.
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