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Finite element methods for the non-linear mechanics of
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SUMMARY

The formulation and �nite element implementation of a �nite deformation continuum theory for the
mechanics of crystalline sheets is described. This theory generalizes standard crystal elasticity to curved
monolayer lattices by means of the exponential Cauchy–Born rule. The constitutive model for a two-
dimensional continuum deforming in three dimensions (a surface) is written explicitly in terms of the
underlying atomistic model. The resulting hyper-elastic potential depends on the stretch and the curva-
ture of the surface, as well as on internal elastic variables describing the rearrangements of the crystal
within the unit cell. Coarse grained calculations of carbon nanotubes (CNTs) are performed by discretiz-
ing this continuum mechanics theory by �nite elements. A smooth discrete representation of the surface
is required, and subdivision �nite elements, proposed for thin-shell analysis, are used. A detailed set of
numerical experiments, in which the continuum/�nite element solutions are compared to the correspond-
ing full atomistic calculations of CNTs, involving very large deformations and geometric instabilities,
demonstrates the accuracy of the proposed approach. Simulations for large multi-million systems illus-
trate the computational savings which can be achieved. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The growing interest in nanoscale science and engineering has provided a tremendous impe-
tus for the development of numerical methods to simulate objects at those scales. Nanoscale
mechanics are usually analysed by atomistic simulations [1–6]. The computational cost of
such calculations limits them to relatively small systems for very short time intervals. For
example, even for bundles or multi-walled nanotubes, the computational cost becomes pro-
hibitive. Remarkably, for many problems of interest, even when the scales are of a few to
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hundred nanometers, properly formulated continuum methods provide very accurate simula-
tions as compared to atomistic calculations, as will become clear from the examples in this
paper. These continuum based methods are much faster than molecular simulations for systems
of engineering interest, which makes them attractive. Although the presence of defects does
not rule out continuum models, the present work does not deal with them. The present paper
addresses the space scale issue, and a coarse-grained computational approach for crystalline
sheets based on continuum mechanics is developed and numerically veri�ed.
Because of the wealth of experimental results on carbon nanotubes (CNTs), as well as their

technological interest, we will focus on them in the applications. The ideas presented are ap-
plicable to other curved lattices of reduced dimensionality (see Reference [7] for applications
to discrete chains). Carbon nanotubes can be viewed as single layer crystalline sheets rolled
into cylinders, with diameters in the nanometer range. These large molecules, or small solids,
possess exceptional mechanical, electronic, thermal, and chemical properties which have fos-
tered an intense research in CNTs based nanostructured materials. Furthermore, deformation
morphologies reminiscent of macroscopic objects such as buckled shells have been observed
[8]. These severe deformations have been shown to be reversible [9, 10], resulting in remark-
ably resilient nanostructures. Several nanodevices have been proposed, which rely often on
the strong dependence of other properties of CNTs, such as the electrical conductance, on the
deformation [11, 12].
Continuum mechanics simulations can model much larger systems than atomistic calcula-

tions because they do not need to track every atom, and the discretization is independent of
the atomic sites. Many authors [1, 13–16] have applied continuum or structural mechanics
concepts to carbon nanotubes, although, as noted by Yakobson et al. [1] ‘its relevance for
a covalent-bonded system of only a few atoms in diameter is far from obvious’. In most
cases, the continuum models are phenomenological and restricted to small deformations. On
occasions, the Euler–Bernoulli beam theory is adopted to model CNTs, and the adequacy of
adopting a full circular cross-section for multi-walled nanotubes is discussed in Reference
[17] in the context of linear elasticity. Carbon nanotubes are commonly idealized as linear
elastic thin shells [1, 18–22], with material parameters �t to available data. A �rst di�culty
encountered by this approach is in the de�nition of a shell thickness for an intrinsically two-
dimensional lattice such as the graphene monolayer (see Reference [23] for a discussion).
Furthermore, nanotubes have been experimentally shown to undergo very large non-linear de-
formations elastically, i.e. reversibly, with intact bond topology [9–11], sometimes under very
small loads [24]. Some authors have attempted to describe the mechanics of CNTs through
non-linear elastic shell theory, by considering non-linear models which match the in�nitesimal
elastic constants obtained from atomistics or experiments [25, 26]. However, the choice of a
particular non-linear model cannot be justi�ed, and this choice a�ects the response in the non-
linear regime. The aim of the present approach for the mechanics of crystalline monolayers
is to circumvent phenomenological models of elasticity, i.e. avoid parameter �tting of any
sort, and instead deductively construct a �nite deformation continuum model from an atom-
istic model. An alternative asymptotic approach has been recently proposed by Friesecke and
James [27]; Qian et al. [28] proposed a method based on constraining the atomic positions to
remain on a surface represented by a meshfree approximation, in the spirit of the non-local
quasicontinuum method.
The systematic approach used here, relying on kinematic rules relating the continuum and

the discrete (atomistic) deformations, has a long and fruitful history. Molecular theories of
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elasticity bridge atomistic descriptions of crystalline solids with �nite deformation continuum
mechanics [29–35], and thus provide a natural framework to overcome the limitations of
commonly used continuum models. The Cauchy–Born rule, also referred as method of the
homogeneous deformations, is a fundamental kinematic assumption that links the deformation
of lattice vectors to that of the continuous medium, and has been recently proven rigorously to
hold under certain conditions [36]. By means of the Cauchy–Born rule, the continuum elastic
potential can be obtained by equating the deformation energy of a representative cell of the
lattice to that of an equivalent volume of the continuum. The resulting continuum constitutive
model depends only on the interatomic interactions, without additional phenomenological in-
put. Consequently, its ability to describe the physical system can only be as good the model
used for the interatomic potential. Constitutive models constructed in this fashion inherit the
crystal symmetries and anisotropy, and can treat �nite deformations. Finite crystal elastic-
ity has been used to obtain elastic moduli and study the stability of crystals [29, 37, 38], to
study phase transformations in solids [35, 39], and recently these ideas have been cast in
a computational framework to solve general boundary value problems in combination with
�nite elements by the quasicontinuum method [40–43]. This method has emerged as an ef-
�cient and accurate simulation method at the nano-scale. The method implemented here is a
generalization of the local quasicontinuum [42, 43] to curved crystalline monolayer sheets.
The basic kinematic law linking atomistic and continuum deformations, the Cauchy–Born

rule, cannot be applied ‘as is’ to the case of curved crystalline sheets one atom thick, par-
ticularly if curvature e�ects are to be accounted for. In Reference [44], we developed an
exponential Cauchy–Born rule which extends the standard Cauchy–Born rule to curved single
layer lattices. The resulting �nite deformation continuum mechanics model does not corre-
spond with conventional shell theories, and views crystalline monolayers as surfaces without
thickness. (References [45, 46] presented continuum models for CNTs based on crystal elas-
ticity, but viewed the tube wall as a shell with thickness.) This is why the term membrane
is adopted, as opposed to shell, which implicitly carries the notion of thickness. It should
be noted, however, that by this name, another terminological convention is violated, since
the elastic energy of a classical membrane depends only on its stretch; in the present theory,
it depends also on the curvature, and thereby the membrane has bending sti�ness as well.
This model properly describes the rearrangements within the unit cell of multi-lattices by the
introduction of a �eld of internal elastic variables.
In the present paper, the numerical implementation of the continuum model for curved

crystalline sheets presented in Reference [44] is given. For completeness, the theory is also
reviewed. Section 2 describes the kinematic setting, as well as the exponential Cauchy–Born
rule relating the deformation of the surface to that of the lattice. In Section 3, for concreteness,
the formulation is particularized to graphene and carbon nanotubes. The hyperelastic constitu-
tive relation for graphene is constructed in terms of a bond-order potential (the Terso�–Brenner
potential). It does not require local atomistic calculations, i.e. it is written in closed-form. De-
tails about its evaluation and the calculation of the corresponding stress measures are provided.
A continuum version of the van der Waals interactions is also formulated, and the continuum
statement for the statics of the membrane is provided. In Section 4, the �nite element imple-
mentation of the theory is developed. Section 5 presents numerical simulations of a widely
studied crystalline sheet, carbon nanotubes. They demonstrate that the continuum/�nite ele-
ment approach accurately reproduces the parent atomistic model in the full non-linear regime.
Our simulations suggest that, in the absence of bond rearrangement or defects, the non-linear
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mechanics of curved crystalline sheets can be accurately modelled within the strict framework
of continuum mechanics. Numerical examples also illustrate the dramatic computational sav-
ings which can be achieved for large multi-walled nanotubes containing millions of atoms,
and replicate some unusual features observed in experiments.

2. EXPONENTIAL CAUCHY–BORN RULE FOR 2D LATTICES

This section presents a concise formulation of the kinematics of the surface replacing the
curved single layer two-dimensional lattice. This presentation focuses on the practical compu-
tation of the variables of interest for a numerical implementation of the theory. Then, the local
approximation of the exponential Cauchy–Born rule for surfaces is presented, which links the
deformation of the atomic bonds to that of the continuum surface.

2.1. Kinematics

As argued in Reference [44], the continuum object replacing the crystalline monolayer is a
surface without thickness. The nuclei are assumed to lie on the surface, and therefore, the
bonds are chords of the surface. It is convenient to de�ne the undeformed or reference system
as the planar crystalline sheet. This choice is natural for carbon nanotubes, since this state
represents the ground (equilibrium) energy level. The spirit of the notation follows Reference
[47], and Reference [48] is a useful reference for the di�erential geometry of surfaces. See also
Reference [49] for a compact and clear presentation of the di�erential geometry of surfaces,
particularly with respect to the expression of the fundamental forms in the parametric space.

2.1.1. General setting, co-ordinate systems, and notation. The undeformed body is consid-
ered to be two-dimensional, i.e. �0 is an open set of R2, and models a slab of planar crys-
talline sheet. The deformation map � maps this undeformed body into the Euclidean space
X ∈�0 �−→ x=�(X )∈R3. The deformed body �=�(�0) is a smooth surface. Let us describe
the undeformed body by Euclidean co-ordinates {X 1; X 2}. The corresponding orthonormal ba-
sis of the tangent of the undeformed body T�0 is B0 = {I1; I2}. Analogously, the Euclidean
co-ordinates {x1; x2; x3} describe R3, and the associated standard basis is B= {i1; i2; i3}.
It is convenient in the numerical formulation to de�ne a parametric body ��⊂R2. Let

this parametric body be described by Euclidean co-ordinates {�1; �2}, and the correspond-
ing orthonormal basis is �B= {�1;�2}. The undeformed con�guration is a di�erentiable and
invertible map �∈ �� �−→X =’0(�)∈�0⊂R2 such that ’0( ��)=�0. Similarly, the deformed
con�guration maps smoothly and bijectively the parametric body into the deformed body
�∈ �� �−→ x=’(�)∈�⊂R3, ’( ��)=�. The deformation map is then

�=’ ◦’−1
0 :X ∈�0 �−→ x=�(X )=’(’−1

0 (X ))∈� (1)

The vector from the origin to the point �(X ) in R3 is denoted by �(X ), and coincides with
the vector �(�) where �=’−1

0 (X ). The components of these vectors, for instance �, in the
standard basis B coincide with the components of the point mappings ’ in the co-ordinate
system {x1; x2; x3}, and are therefore denoted by the same symbol ’a; a=1; 2; 3. Note that
boldface is reserved for vectors and tensors, while points (x; X; �; : : :) and point mappings
(�; ’0; ’; : : :) are denoted with lightface. This general setting is illustrated in Figure 1.
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Figure 1. Membrane kinematics.

At each point of the surface x∈�, the tangent space Tx� is a linear space which can be
viewed as the plane tangent to � at x ‘centered’ at this point. The convected basis of the
tangent of the deformed body T�, C= {g1; g2}, is de�ned in terms of the components of ’
in the co-ordinate system {x1; x2; x3} and the corresponding Euclidean basis vectors of R3 by

g�=
@�
@��

=
@’a

@��
ia; �=1; 2 (2)

Components in the convected basis C, as well as in the parametric Euclidean basis �B, are
denoted by Greek indices (�; �; : : :), and run from 1 to 2. Components in the Euclidean co-
ordinate system of �0 and the associated basis B0, are denoted by upper case indices (A; B; : : :)
which run from 1 to 2, while lower case indices (a; b; : : :) denote components in the Euclidean
co-ordinate system of R3 and the basis B, and run from 1 to 3. Summation on these indices
when repeated is implied. Other indices (i; j; k; n; I; : : :) do not represent components of vectors
and tensors in these bases, and summation is not implied by the repetition of these indices.
Super-indexes (contravariant indexes) act on forms, while sub-indexes (covariant indexes) act
on vectors. Brackets with a basis in the subscript denote the matrix representation of a tensor
in that particular basis. The matrix representation of two point tensors requires two bases
in the subscript to specify the basis used for each index. To keep the notation simple, we
do not distinguish in this notation between the bases and the corresponding dual bases. It is
understood that covariant indices are expressed in the dual bases. For one point tensors, if
the same basis is used for each index, only one basis in the subscript is su�cient.

2.1.2. Tangents of the con�gurations and deformation gradient. In the following, indicial
notation, invariant notation, as well as matrix representation of tensors are provided on many
occasions for clarity. The matrix representation of the tangent map of the undeformed con�g-
uration in the Euclidean bases �B-B0, is denoted according the our conventions as [T’0]B0 �B.
Its components can be computed as (T’0)A�= @’

A
0 =@�

�. The area element in the undeformed
body can be expressed as

d�0 =det[T’0]B0 �B d�
1 d�2 (3)
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On the other hand, noting that the image of the referential basis vector �� through the
tangent of the deformed con�guration T’ is the convected basis vector g�, we have [T’]C �B=
[Id]2×2 (the information about the deformation is contained in the convected basis vectors).
Applying the chain rule, the deformation gradient can be written as F=T�=T’ ◦T’−1

0 .
For pull-back operations in the following sections, the components of the deformation gradient
in the bases B0-C are needed. Thus, we have

[F]CB0 = [T’]C �B[T’
−1
0 ] �BB0

= [Id]2×2[T’0]−1B0 �B
=[T’0]−1B0 �B

(4)

or in components

F�A= �
�
�(T’

−1
0 )

�
A=(T’

−1
0 )

�
A (5)

2.1.3. The metric and the Green deformation tensors. The matrix representation of the metric
tensor of the surface � in the convected basis is:

[g]C=

[
g11 g12

g21 g22

]
(6)

where the covariant components (the components in C) are obtained from the convected basis
vectors as

g��= 〈g� | g�〉=(g�)a(g�)a (7)

where 〈· | ·〉 denotes the Euclidean inner product. The metric tensor is nothing but the expres-
sion of the Euclidean inner product in the tangent of the surface �; the �rst fundamental form
I(w)= ‖w‖;w∈T� can be written in the convected co-ordinates as I(w)= g��w�w�, where
w=w�g�. Note that the matrix in Equation (6) is symmetric. The Green deformation tensor
(with lowered indexes) is de�ned as the pull-back of the metric tensor C[=�∗g. Therefore,
its matrix representation is

[C[]B0 = [F]
T
CB0
[g]C[F]CB0 ; or CAB= g��F�AF

�
B (8)

Thus, the matrix expression of the Green deformation tensor (with lowered indexes) in the
basis B0 is the symmetric matrix:

[C[]B0 = [T’0]
−T
B0 �B
[g]C[T’0]−1B0 �B

; or CAB= g��(T’−1
0 )

�
A(T’

−1
0 )

�
B (9)

Since the Green deformation tensor (with lowered indexes) C[ is always expressed in the
Euclidean basis B0, we do not need to distinguish between the tensors C[ and C. To simplify
the notation, the [ is dropped.

2.1.4. The principal curvatures. The unit normal to the deformed body � is

n=
1

‖g1×g2‖ g1×g2 (10)

or in components

na=
�a bc(g1)

b(g2)c√
�def�dgh(g1)e(g2)f(g1)g(g2)h

(11)
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where ‖ · ‖ denotes the Euclidean norm, and �a bc is the permutation symbol. The covariant
components of the curvature tensor, that is the matrix elements of [k]C, can be obtained as

k��= 〈n | g�;�〉= na(g�;�)a (12)

where (·); � denotes @(·)=@��. The second fundamental form of the surface � can be expressed
in convected co-ordinates as II(w)= k��w�w�.
Similarly to the metric tensor, the pull-back of the curvature tensor K=�∗k can be

expressed in the Euclidean basis B0 as the symmetric matrix:

[K]B0 = [T’0]
−T
B0 �B
[k]C[T’0]−1B0 �B

; or KAB= k��(T’−1
0 )

�
A(T’

−1
0 )

�
B (13)

The principal curvatures k1 and k2, and the principal directions v1 and v2 of the surface � are
the eigenvalues and eigenvectors of the Weingarten map, i.e. they are characterized by being
the maximum and the minimum of the quotient II(w)=I(w);w∈T� and w 	= 0. Note that the
principal directions are tangent to the surface. Using convected co-ordinates, the principal
curvatures and directions are found as solutions of the generalized eigenvalue problem

[k]C[v]C= k[g]C[v]C (14)

Alternatively, it is possible to �nd the principal curvatures, and the pull-back of the principal
directions expressed in B0 solving the generalized eigenvalue problem

[K]B0 [V]B0 = k[C]B0 [V]B0 ; or KABV B= k CACVC (15)

where now V1;V2 ∈T�0. The eigenvectors, which are C-orthogonal, are normalized with re-
spect to C, so that

CAB(Vn)A(Vm)B= �nm (16)

Details about the solution of this eigenvalue problem, as well as formulas for the derivatives of
the principal curvatures and directions with respect to C and K are provided in Appendix A.1.

2.2. Local approximation of the exponential Cauchy–Born rule

As detailed in Reference [44], the standard Cauchy–Born rule postulates that the lattice vectors
deform according to the linear transformation a=F(X )A, where A denotes an undeformed
lattice vector emanating from X and a denotes this vector after deformation. This kinematic
assumption, which for space-�lling crystals has proven to be useful and rigorously valid in
some cases, fails to capture the mechanics of curved crystalline monolayers. Inspired by the
geometric structure of the Cauchy–Born rule in the context of the �nite deformation kinematics
of surfaces, an extension of the Cauchy–Born rule to account for the curvature of the �lm
was proposed in Reference [44]. The exponential Cauchy–Born rule can be summarized with
the formula a= exp ◦F(X )A, where exp denotes the exponential map of the surface at �(X )
[48]. The basic idea is that, in the setting of 2D lattices deforming in 3D, the standard
Cauchy–Born rule produces a deformed lattice vector which is tangent to the surface, not
a chord (recall that we view atomic bonds as chords to the surface). The exponential map
brings this tangent vector back to the surface, thereby de�ning a chord (see Figure 2 for an
illustration). See Reference [50] for the simplest application of this idea to an atomic chain
deforming in 2D.
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Figure 2. The exponential map transforms the vector w=FA tangent to the surface
into a chord of the surface a.

In general the evaluation of the exponential map, and therefore the application of the
exponential Cauchy–Born rule, requires the knowledge of the geodesic curves. In a given
co-ordinate system, these are obtained by integration of a system of two non-linear ODEs.
The coe�cients of these equations are the Christo�el symbols. In general, a closed-form
solution of these equations is not available, and the exponential Cauchy–Born rule must be
approximated in order to obtain practical local models. An approximation based on decoupling
the principal directions was proposed in Reference [44]. The �nal formula is presented next.
This approach is simple and leads to accurate models, as demonstrated by the numerical
experiments described later.
For the planar undeformed crystal, the exponential Cauchy–Born rule reads:

a =FX = exp�(X ) ◦F(X )A (17)

The �rst part of this map can be readily performed and is equivalent to the standard Cauchy–
Born rule:

w=FA (18)

We call this vector the tangent deformed lattice vector, and it can be thought of as the push-
forward of A. Consider an auxiliary Euclidean co-ordinate system of R3, {x̃1; x̃2; x̃3} centered
at x=�(X ) and whose axes are parallel to v1, v2, and v1×v2. The associated orthonormal basis
is B̃= {v1; v2; v1×v2}. Consider also the restriction of this co-ordinate system to Tx�, {x̃1; x̃2}
with the basis B̃Tx� = {v1; v2}. The components of w in the basis B̃Tx� can be computed as{

w1

w2

}
=

{〈w | v1〉
〈w | v2〉

}
=

{
V1 ·C ·A
V2 ·C ·A

}
=

{
CABAA(V1)B

CABAA(V2)B

}
(19)

By de�ning Q(x)= sin x=x, the expression for the deformed lattice vector in the orthonormal
basis B̃ provided by the local approximation to the exponential Cauchy–Born rule is

[a]B̃=



a1

a2

a3


 =




w1Q(k1w1)

w2Q(k2w2)

k1(w1)2

2
Q2(k1w1=2) +

k2(w2)2

2
Q2(k2w2=2)


 (20)

Bearing Equation (18) in mind, and the fact that k1;2 and V1;2 are obtained from the eigenvalue
problem (15), it is clear that [a]B̃ depends only on the undeformed lattice vector A, the Green
deformation tensor C and the pull-back of the curvature tensor K.
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The length of a deformed bond, and the angle between two deformed bonds a and b
obtained following Equation (20) can be computed simply as

a= ‖a‖=√acac and �= arccos
〈a | b〉
ab

= arccos
acbc

ab
(21)

Thus, the bond lengths and angles have been expressed in terms of the continuum strain
measures C and K. Basically, we have obtained the derived strain measures a=f(C;K;A)
and �= g(C;K;A;B). These continuous strain measures are adequate to formulate continuum
models from the atomistic description of the system, given both the lattice structure and the
interatomic potential. Note that, although here the potential depends on the bond lengths and
angles, it is straightforward to apply the methodology presented here to atomistic descriptions
which include dihedral angles.

3. FINITE DEFORMATION MEMBRANE FOR NANOTUBES

In this section, we particularize the formulation to a representative crystalline sheet, namely
graphene. Its lattice structure is described, and the need to account for the inner displace-
ments—additional internal elastic variables—is highlighted. Then, given an interatomic po-
tential, the hyperelastic potential for the continuum membrane is formulated. The continuum
version of the external and the non-bonded potential is then presented. With these ingredients,
the variational statement of the continuum boundary value problem is provided for the statics
of the membrane.

3.1. Lattice structure of graphene

The graphene lattice is de�ned in the undeformed body �0. This lattice has three inequivalent
bonds A0i ; i=1; 2; 3 (see Figure 3 for an illustration). Given an orientation �0 which by
symmetry considerations takes values in (−�=6; �=6], these undeformed bond vectors can be
de�ned as

[A01]B0 = A0

{
cos�0
sin �0

}

[A02]B0 = A0

{
cos(�0 + 2�=3)

sin(�0 + 2�=3)

}
(22)

[A03]B0 = A0

{
cos(�0 − 2�=3)
sin(�0 − 2�=3)

}

where A0 is the equilibrium bond length (see Figure 1). When modelling nanotubes, the ini-
tial deformed con�guration is a cylindrical surface, and thus the initial deformation map
maps the undeformed planar graphene sheet into this cylinder. The chirality in the tube
can be speci�ed by selecting the appropriate orientation �0 with respect to the rolling ori-
entation. For example, suppose a (n1; n2) nanotube is modelled. Its ideal radius is given

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:419–456
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Figure 3. Graphene honeycomb multi-lattice: the two simple Bravais lattices, depicted in
di�erent colors, are relatively displaced by the inner displacement W, which consequently
also a�ects the bond vectors which are transformed from A0i into Ai. The unit cell of area

S0 is also represented. It contains two nuclei and three inequivalent bonds.

by R0 =A0
√
3(n21 + n1n2 + n

2
2)=2�, and the chiral angle by arctan[

√
3n2=(2n1 + n2)] [51]. In

this situation, the undeformed body for such a nanotube of length L can be de�ned in
{X 1; X 2} as �0 = (0; L)×(0; 2�R0). The initial deformed con�guration of the nanotube bring-
ing this undeformed body into the initial cylinder of length L can be de�ned in {x1; x2; x3} as
�1 =X 1;�2 =R0 cos(X 2=R0), and �3 =R0 sin(X 2=R0). In this situation, the chiral angle coin-
cides with �0. Thus, a zig-zag nanotube is characterized in this setting by �0 =0, while an
arm-chair nanotube by �0 =�=6.
When dealing with graphene, special attention must be paid to the fact that the honeycomb

lattice is a Bravais multi-lattice. These lattices have more than one basis nucleus, and can be
viewed as a collection of inter-penetrating simple lattices (see Figure 3). Note that one atomic
site (say a black one) and the lattice basis vectors B1 and B2, are not enough to de�ne the
entire lattice, in particular the white sites. Either a white site or the shift vector P is also
needed. The position vectors of the atomic sites are then:

Xn= niBi +mP (23)

where summation on the index i is implied, n1 and n2 are integers, and m takes the values 0
(black) or 1 (white).
The standard crystal elasticity treatment of multi-lattices is to assume that the homogeneous

deformation a�ects each of the simple lattices. Additional kinematic variables describing the
relative shifts of the simple lattices must be introduced to properly describe the con�gura-
tions of uniformly strained multi-lattices. These relative shifts are called inner displacements
[29–32, 42]. The optical modes are the analog of the inner displacements in lattice dynam-
ical theories [34]. The relative displacement of the basis nuclei cannot be represented by a
homogeneous deformation, and is instead an internal mode of deformation. It is clear from
Figure 3 that a perturbation in the shift vector by W leaves the basis vectors unchanged, but
changes the con�guration of the lattice by perturbing the triplet of bond vectors A0i by the
same amount.
In the continuum setting, additional kinematic variables must be introduced to account

for these rearrangements within the unit cell, which for graphene simply a�ect its elasticity;
for other materials they may describe phase transformations [42, 52]. Let W denote the inner
displacements, which following Reference [42], are de�ned in the undeformed body, previous
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to the ‘macroscopic’ deformation �; W is a vector �eld in T�0. This guarantees rotational
invariance of this kinematic variable. Owing to the inner displacements, the undeformed lattice
vectors in T�0 become

Ai=A0i + W; i=1; 2; 3 (24)

A given continuum deformation transforms the triplet of undeformed bond vectors according
to the exponential Cauchy–Born rule: ai=FX (Ai)=FX (A0i + W). Through Equations (20)
and (21), it is possible to express the derived strain measures in terms of the local deformation
of the surface and the inner displacements. Thus, the lengths of these deformed bond vectors
can be written as

ai=f(C;K;Ai)= �f(C;K; W;A0i); i=1; 2; 3 (25)

and the three angles these inequivalent bonds form after deformation as

�i= g(C;K;Aj;Ak)= �g(C;K; W;A0j;A0k); i=1; 2; 3 (26)

where {i; j; k} is an even permutation of {1; 2; 3}. The dependence on the inner displacements
�eld through Equation (24) has been emphasized.

3.2. Interatomic potential and constitutive model

Once the lattice structure of the crystalline sheet has been described, and characterized in the
continuum setting, a model for the potential energy of the atomistic system is needed. The
Terso�–Brenner potential for hydrocarbons [53] is considered in the simulations in the present
paper, which follows the bond-order formalism [54]. This analytical potential has been widely
used for carbon nanotubes [1, 55], and expresses the energy in terms of bond lengths and
angles, as a sum over the bonds:

E=
∑
i

∑
j¿i
[VR(rij)− �BijVA(rij)] (27)

where �Bij depends on the lengths of the bonds and angles adjacent to the ijth bond. Note
that the present approach is not limited to analytical potentials (Reference [42] presented
a quasicontinuum method based on the tight-binding method, while in Reference [52] an
ab initio Hamiltonian was considered).
By considering a representative cell, which for the graphene honeycomb lattice is hexag-

onal, contains two nuclei, one of each of the inequivalent bonds, and has a surface area of
S0 = (3

√
3=2)A20 (see Figure 3), the strain energy density (energy per unit area) of the con-

tinuum membrane can be written by dividing the energy of this cell by its area. For instance,
for the Terso�–Brenner potential it is

W =W (C;K; W)= 1
S0

3∑
i=1
[VR(ai)− �B(aj; ak ; �j; �k)VA(ai)] (28)

where {i; j; k} is an even permutation of {1; 2; 3}. The dependence of this hyperelastic potential
on the stretch C and curvature K of the surface, and on the inner displacement �eld W can be
traced in Equations (25) and (26). The dependence of the energy on the undeformed lattice
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vectors has been omitted. Note that these strain measures and the de�nition of the inner
displacements in the undeformed body guarantee frame indi�erence—rotational invariance—
of the hyperelastic potential.
The inner displacements can be eliminated at the constitutive level. Given a deformation

of the surface, the strain energy density can be minimized with respect to W:

Ŵ(C;K)= arg
(
min
W
W (C;K; W)

)
=⇒ @W

@W

∣∣∣∣
W= Ŵ

= 0 (29)

After this inner relaxation, the strain energy density can be written as a function of only C
and K:

Ŵ (C;K)=W (C;K; Ŵ(C;K)) (30)

Note that, while a closed-form expression for the hyperelastic potential W is available (see
Equation (28)), the evaluation of Ŵ (C;K) involves a bivariate minimization problem, which
is solved numerically by Newton’s method (see Appendix A.2).
Two stress tensors (membrane and bending) can be de�ned by taking derivatives of the

elastic potential with respect to the strain measures. As noted by Reference [42], in doing so
one can bene�t from the fact that the inner displacements are in internal equilibrium. Indeed,
for the derivative with respect the stretch and using Equation (29), we have

@Ŵ
@C

=
(
@W
@C

+
@W
@�A

@�̂A

@C

)∣∣∣∣
W= Ŵ

=
@W
@C

∣∣∣∣
W= Ŵ

(31)

and therefore this derivative can be computed in closed-form from the function W .
The membrane or second Piola–Kirchho� stress tensor is de�ned as

S=2
@Ŵ
@C

=2
@W
@C

∣∣∣∣∣
W= Ŵ

(32)

and similarly, a Lagrangian bending (symmetric) tensor is de�ned as

m=
@Ŵ
@K

=
@W
@K

∣∣∣∣∣
W= Ŵ

(33)

Box 1, in combination with the appendices, describes the calculation of the strain energy
density and the stresses. Note that the membrane stress tensor S has units of force divided by
length (surface tension), while m has units of force. These stresses are not stress resultants,
and the unusual units follow from the fact that the continuum object is a surface without
thickness.
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Box 1. Constitutive model: calculation of the strain energy density and the stresses.

Given CAB and KBC ,
1. Principal curvatures: Solve the eigenvalue problem of Equation (15), and obtain the
principal curvatures, the pull-back of the principal directions, and their derivatives
with respect to the strain measures (see Appendix A.1):

kn;
@kn
@CAB

;
@kn
@KAB

; (Vn)A;
@(Vn)A

@CBC
;
@(Vn)A

@KBC
; n=1; 2

2. Inner relaxation: Minimize W (C;K; W) with respect to W, and �nd (see Appendix
A.2):
• Ŵ: relaxed inner displacements
• Ŵ : relaxed strain energy density
• (Ai)A=(A0i)A + �̂A; i=1; 2; 3: updated undeformed lattice

3. Exponential Cauchy–Born rule: Compute bond lengths and angles (see Equations
(20), (21), (25) and (26)), and their derivatives with respect to the strain measures
(see Appendix A.3):

ai;
@ai
@CAB

;
@ai
@KAB

; �i;
@�i
@CAB

;
@�i
@KAB

4. Stress tensors: Apply the chain rule to Equation (28), and recall Equations (32) and
(33):

SAB=2
3∑
i=1

(
@W
@ai

@ai
@CAB

+
@W
@�i

@�i
@CAB

)

mAB=
3∑
i=1

(
@W
@ai

@ai
@KAB

+
@W
@�i

@�i
@KAB

)

3.3. Non-bonded interaction and external forces

The non-bonded or van der Waals interactions are generally treated by interatomic potentials
that only act between non-bonded pairs of atoms. These di�use interactions are critical to
the mechanics of nanotubes interacting with substrates or packed in bundles, of multi-walled
nanotubes, and of nanotubes in their collapsed con�gurations. The non-bonded energy of the
atomistic system can be written as

Enb =
∑
i

∑
j¿i;j =∈Bi

Vnb(rij)=
1
2
∑
i

∑
j =∈Bi

Vnb(rij) (34)

where Vnb is the non-bonded potential, rij is the distance between atoms i and j, and Bi is
the set of atoms bonded to atom i. A simple argument involving two representative cells of
area S0 each containing n nuclei (n=2 for graphene, see Figure 3) allows us to write the
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continuum van der Waals energy double density as

Vnb(d)=
(
n
S0

)2
Vnb(d) (35)

where d is the distance between two points in the deformed body. The continuum counterpart
of the total non-bonded energy takes then the form

�nb[�]=
1
2

∫
�0

∫
�0−BX

Vnb(‖�(X )−�(Y )‖) d�0Y d�0X (36)

where BX is a ball centred at X with a radius that is a function of the potential cut-o�
radius to account for the fact that this potential does not a�ect bonded atoms. The classical
Lennard-Jones potential has been adopted here for the non-bonded interactions [56].
When external forces are applied on the nuclei (e.g. electrostatic forces), the continuum

counterpart is a body force, and the corresponding potential energy is

�ext[�]=
∫
�0
B ·� d�0 (37)

where B is the body force per unit undeformed area.

3.4. Boundary value problem

From the developments of the previous section, we can express the internal energy of an
elastic membrane whose undeformed con�guration is a planar body �0, and which is subject
to the deformation map 	, as

�int[	]=
∫
�0
Ŵ (C(	);K(	)) d�0 (38)

The total potential energy of the system is then

�[	]=�int[	]−�ext[	] + �nb[	] (39)

The stable equilibrium deformation maps of the system are given by

�= arg
(
inf
	∈C

�[	]
)

(40)

i.e. the equilibrium deformation is a minimizer of �. C is the appropriate space of deformation
maps or trial functions accounting for essential boundary conditions, see e.g. Reference [57].
According to the principle of stationary energy, the equilibrium con�gurations of the system
� are stationary points of the potential energy functional, and verify the principle of virtual
work:

0= ��[�; ��]=
∫
�0

(
1
2 S : �C+m : �K

)
d�0 − ��ext[�; ��] + ��nb[�; ��] (41)

for all ��∈V, the corresponding space of admissible variations. The expressions of �C and
�K in terms of �� are described in Appendix B. The variations of the non-bonded and the
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external energy functionals are

��nb[�; ��]=
1
2

∫
�0

∫
�0−BX

1
‖�(X )−�(Y )‖V

′
nb(‖�(X )−�(Y )‖)

×〈�(X )−�(Y ) | ��(X )− ��(Y )〉 d�0Y d�0X (42)

and

��ext[�; ��]=
∫
�0
B · �� d�0 (43)

4. NUMERICAL IMPLEMENTATION

This section describes the numerical approximation of the above boundary value problem for
the hyperelastic membrane. The con�gurations are approximated by a �nite element scheme.
Since the energy is a function of the curvature, the �nite element space must have bounded
second order derivatives. The calculation of the energy and the nodal forces, required by the
minimization algorithm, is detailed.

4.1. Finite element approximation

Let us de�ne the following notation: the superscript (·)h denotes discretized �nite element
�elds, as well as nodal values in global numbering, while the superscript (·)e denotes the
restriction to element e of a �nite element �eld or nodal values in local element numbering.
The correspondence between these global and the local numbering schemes is established
through the standard scatter and gather operations [57].

4.1.1. Con�gurations. In the �nite element setting, the undeformed domain is triangulated in
nel elements so that �0 =

⋃nel
e= 1T

e
0 and Te

0 ∩Tf
0 =? if e 	=f. Following the isoparametric

concept, a referential or parametric element �T is de�ned, and takes the role of the parametric
body ��. The parametric element is mapped into each undeformed element Te

0 through the
elemental undeformed con�guration ’e0; thus, the �nite element undeformed con�guration ’

h
0 is

a parametrization of �0 de�ned element-wise. It can be written in terms of the shape functions
NI (�1; �2) and nodal coe�cients. For each of the components A of the discrete undeformed
con�guration ’h0 in the co-ordinate system {X 1; X 2}, and for each element e we have:

(’e0)
A(�1; �2)=

∑
I
(’e0)

A
I NI (�

1; �2); ∀(�1; �2)∈ �T (44)

where (’e0)
A
I are the nodal coe�cients in the local element numbering, while according to the

above mentioned notation, the nodal coe�cients in the global numbering are (’h0)
A
J .

The �nite element deformed con�guration ’h is de�ned in a similar fashion. Each element,
�T is mapped into the deformed element Te through ’e. The �nite element approximation of
the position vectors is

�e(�1; �2)=
∑
I
�eI NI (�1; �2); ∀(�1; �2)∈ �T (45)
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Figure 4. Finite element discretization.

The nodal degrees of freedom of the system are �hJ , while (�h0)J de�ne the undeformed
con�guration. Note that the vector nodal coe�cients �hJ only corresponds to the position
vector of node J if the �nite element scheme is an interpolation; the one used here is not.
The �nite element deformation map is then �h=’h ◦ (’h0)−1. This general setting is sketched
in Figure 4.
Here, subdivision �nite elements based on Loop’s scheme are used [58]. There are 12 shape

functions NI (�1; �2) (the quartic box spline shape functions); the approximated �eld within a
triangular element depends not only on the nodal coe�cients of its three nodes, but also on
the coe�cients of its �rst neighborhood of nodes. This approximation scheme produces H 2

�elds, i.e. �elds with up to second square integrable derivatives. This is crucial in the present
theory since the strain energy density depends the curvature of the surface K, which therefore
needs to be square integrable. The need of �nite second derivatives of the shape functions
is clear from Equation (47) below. Any other smooth enough discrete parametrization of
the surface can be used instead of subdivision �nite elements, e.g. the element-free Galerkin
approximation [59].

4.1.2. Calculation of the strain measures. The convected basis vectors can be computed,
recalling Equations (2) and (45), for each element e as

g�=
∑
I
NI;� �eI ; or (g�)a=

∑
I
(’e)aI NI;� (46)

Note that these vectors are tangent to the �nite element surface Te. For the curvature tensor,
the derivatives of the convected basis vectors are needed, and are obtained as

g�;�=
∑
I
NI;�� �eI ; or (g�;�)a=

∑
I
(’e)aI NI;�� (47)

For the pull-back operations (see Equations (9) and (13)), the matrix elements of [T’h0]B0 �B
in each element e are

(T’e0)
A
�=

@(’e0)
A

@��
=
∑
I
(’e0)

A
I NI;� (48)

This 2×2 matrix needs to be inverted once at each integration point at the beginning of the
computation, is then stored and retrieved each time a tensor needs to be pulled-back.
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4.2. Discrete minimization problem

Stable con�gurations of the discrete system are obtained by direct minimization of the poten-
tial energy �[�h] of the discretized system. Numerical methods that only require gradients
of the discrete energy with respect to the degrees of freedom have been used, namely the
Conjugate Gradients method and the BFGS quasi-Newton method [60, 61]. We now describe
the numerical calculation of the internal and non-bonded energy, as well as the nodal forces.
The external contributions are straightforward.

4.2.1. Internal energy. Since the undeformed con�guration ’h0 is �xed, the �nite element
deformation map �h is determined by the nodal coe�cients �hJ . The internal energy for this
deformation map is computed by splitting the integral over the undeformed body into elements,
transforming these element integrals to integrals in the referential element, and approximating
these integrals by numerical quadrature:

�int[�h] =
∫
�0
Ŵ (C(�h);K(�h)) d�0

=
nel∑
e= 1

∫
�T
Ŵ (C;K) det(T’e0) d �T

≈
nel∑
e= 1

nint∑
i=1
Ŵ (C;K)|�i det[(T’e0)A�]|�i �!i︸ ︷︷ ︸

!ei

(49)

where nint is the number of quadrature points for the internal energy, �i denote the quadrature
points and �!i the corresponding weights. The de�nition of the weights !ei for the deformed
element, which include the determinants, is convenient for subsequent equations.

4.2.2. Internal forces. The internal nodal forces of the discrete system are the derivatives of
the internal energy with respect to the nodal degrees of freedom

(fint)J =
@�int
@�hJ

(50)

where (fint)J corresponds to the global numbering. The application of the chain rule allows
us to compute the elemental contributions to these forces elementwise:

(f eint)I =
∫
�T

(
@Ŵ
@CAB

@CAB
@�eI

+
@Ŵ
@KCD

@KCD

@�eI

)
det(T’e0) d �T

≈
nint∑
i=1

(
1
2
SAB

@CAB
@�eI

+mCD
@KCD

@�eI

)∣∣∣∣
�i

!ei (51)

where !ei is de�ned in Equation (49). These elemental forces are then gathered into the global
internal force array (fint)J . The computation of the internal energy and forces in each element
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Box 2. Calculation of the elemental internal energy and forces.

• Initialize �eint = 0, (feint)aI =0.
• Scatter (’e)aI from (’h)aJ .
• Loop over the quadrature points i=1, nint (everything evaluated at �i):
1. Compute the Green deformation tensor (following Equations (46), (7), (9) and
(48)), and its derivatives with respect to the degrees of freedom (see Appendix
B):

CAB;
@CAB
@(’e)aI

2. Compute the (pull-back of the) curvature tensor (following Equations (11), (47),
(12), and (13)), and its derivatives with respect to the degrees of freedom (see
Appendix B):

KAB;
@KAB

@(’e)aI

3. Compute the strain energy density Ŵ (C;K) and the stress tensors SAB and mAB

(see Box 1).
4. Increment the elemental internal energy and forces:

�eint ← �eint + Ŵ!
e
i ;

(feint)
a
I ← (feint)aI +

(
1
2
SAB

@CAB
@(’e)aI

+mCD
@KCD

@(’e)aI

)
!ei

• Gather (feint)aI into (fhint)aJ , and add �eint to the total internal energy

is summarized in Box 2. The details of the calculation of the derivatives of the strain mea-
sures with respect to the nodal degrees of freedom are provided in Appendix B. It is worth
mentioning that the symmetry of the strain and the stress tensors is taken advantage of in the
computer implementation by means of Voigt notation [57].

4.2.3. Non-bonded energy. It is important to omit the non-bonded energy of pairs of in-
tegration points which, in the undeformed body, lie within the bonding distance. However,
for the sake of simplicity, this fact is not noted in the following expressions (see Equa-
tion (36)). The numerical evaluation of the non-bonded energy entails a double integral,
which is performed as a double loop over the elements. Because of the high computational
cost of this operation, the computer implementation includes a binning algorithm to search
for close (within van der Waals interaction distance) neighbors, and the neighbor lists are
updated every few energy evaluations. The numerical approximation of this energy can be
written as

�nb[�h] =
1
2

∫
�0

∫
�0−BX

Vnb(‖�h(X )−�h(Y )‖) d�0Y d�0X
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Figure 5. Two numerical surfaces coming to van der Waals contact, but failing to feel
it because of insu�cient quadrature points: the �nite element nodes are represented
by •, the quadrature points for the non-bonded term by #, and the van der Waals

cut-o� radius by circles, which here do not overlap.

=
nel∑
e= 1

∫
�T

nel∑
f= e+1

∫
�T
Vnb(‖�e(�)− �f(	)‖) det(T’e0) det(T’f0 ) d �T	 d �T�

=
nel∑
e= 1

nnb∑
i= 1

nel∑
f= e+1

nnb∑
j= 1

Vnb(‖�e(�i)− �f(	j)︸ ︷︷ ︸
�e−f
i−j

‖)!ei !fj (52)

where �e−fi−j denotes the vector de�ned by the ith quadrature point of element e and the
jth quadrature point of element f, nnb is the number of quadrature points for the non-
bonded term, and !ei is de�ned in Equation (49). Note that the numerical quadrature for
the integration of the non-bonded term need not be the same as that for the internal en-
ergy, i.e. in general nnb 	=nint. The latter is obviously independent of the element size,
while the former is determined by the van der Waals cut-o� distance relative to the ele-
ment size. The non-bonded potential decays with distance, and a cut-o� radius is usually
implemented. Large nanotubes display smooth deformations, which can be accurately rep-
resented with very large �nite elements relative to this cut-o� radius. In this situation, it
may be necessary to sample the above integrals with a large number of quadrature points
to accurately resolve the scale of the non-bonded interactions. Otherwise, two very close
surfaces could fail to ‘feel’ the van der Waals interactions simply because the quadra-
ture points sampling the above integrals on each surface are separated too much (see Fig-
ure 5 for an illustration). In the numerical simulations presented later, up to 12 Gauss
points per element are needed for the integration of the non-bonded term for the largest
nanotubes. Note however that the number of integration points for the non-bonded term
is generally considerably smaller than the number of nuclei in the atomistic model, re-
sulting in important computational savings in the calculation of the non-bonded interac-
tions.

4.2.4. Non-bonded forces. We can de�ne a non-bonded energy between elements e and
f ¿ e as

�e−fnb =
nnb∑
i= 1

nnb∑
j= 1

Vnb(‖�e−fi−j ‖)!ei !fj (53)

This energy results in an elemental force in the nodes of element e

(f e=fnb )I =
@�e−fnb

@�eI
=

nnb∑
i= 1

nnb∑
j= 1

1

‖�e−fi−j ‖
V′
nb(‖�e−fi−j ‖)NI (�i)!ei !fj �e−fi−j (54)
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as well as a corresponding elemental contribution of the force in element f

(ff=enb )I =
@�e−fnb

@�fI
= −

nnb∑
i= 1

nnb∑
j= 1

1

‖�e−fi−j ‖
V′
nb(‖�e−fi−j ‖)NI (	j)!ei !fj �e−fi−j (55)

which are gathered into (fnb)J accordingly.

5. NUMERICAL VALIDATION OF THE THEORY

This section describes a series of calculations performed on carbon nanotubes, which are
an example of curved crystalline sheets for which many experimental studies have recently
become available. In these simulations, nanotubes are deformed incrementally beyond the
load where structural instabilities occur, in the full non-linear regime. The positions of the
nodes at the end of the tubes are incrementally displaced and, in each step, the energy is
minimized. In order to test the accuracy and performance of the continuum/�nite element
computational scheme, full atomistic calculations for the same nanotubes and loadings are
performed independently, and the equilibrium con�gurations and energies provided by the
two methods are compared. We emphasize that the continuum model does not come from
�tting material parameters to match atomistic simulations, but rather a given model for the
interatomic potential is used both in the atomistic calculations and to construct the continuum
model. The continuum model is thus intended to mimic the atomistic model, which is assumed
to be ‘true’. Therefore, when we speak of the accuracy or the error of the continuum model,
the reader should understand that the atomistic model at hand is taken as the reference. In
the following examples, the Terso�–Brenner potential is adopted (the second parameter set
in Reference [53]) for the bonded interactions, and the Lennard–Jones potential for the non-
bonded interactions corresponds to the graphene–graphene parameter set in Reference [56].
As mentioned before, subdivision �nite elements based on Loop’s scheme [58] have been

used. In this method, a control surface mesh whose nodes have only translational degrees of
freedom parameterizes the surface. The control or computational mesh is presented in one of
the examples below as a faceted surface. In most cases, the post-processed smooth surface
de�ned by the computational mesh is shown. This smooth surface is the actual numerical
representation of the deformation of the continuum membrane, while the computational mesh
only represents the degrees of freedom of the discrete model.
The molecular mechanics and the �nite element computer codes are comparable, and actu-

ally share many routines like those de�ning the interatomic potentials and the minimization
routine. Therefore, the computational times can be used to compare the two methods. For
a given number of degrees of freedom, the calculation of the energy and the forces for the
continuum/�nite element model is more expensive than for the atomistic system (the metric
and the curvature tensors of the surface, as well as their derivatives with respect to the nodal
degrees of freedom must be computed, and the inner relaxation must be performed). Nev-
ertheless, the reduction of degrees of freedom that the continuum model allows for a given
problem makes this approach much more e�cient when many atoms correspond to an ele-
ment. This is not only due to the computational savings in each calculation of the energy and
the forces for a much smaller system, but also due to the reduction in degrees of freedom of
the continuum/�nite element systems that speeds the convergence of the minimization routine.
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Figure 6. Compressed 8:7 nm long (18,0) nanotube, comparison between the full
atomistic model and the continuum/�nite element model: (a) super-imposed deformed
con�gurations for atomistic (black spheres) and �nite element (grey surface) calcu-
lations; and (b) strain energy evolution for the atomistic model (—) and for the
continuum simulation (•). The strain energy for a continuum model in which the

inner displacements are not relaxed is also depicted ( ).

Furthermore, it is possible to take larger load increments with the continuum/�nite element
model without compromising the convergence of the minimization routine—in the computa-
tional time comparisons, however, the number of load steps is the same for the atomistic and
the continuum calculations.

5.1. Compressed (18,0) nanotube

Figure 6 shows the results for a (18,0) zig-zag nanotube compressed beyond the buckling
point. In this example, both the atomistic and the �nite element model have about 4300 degrees
of freedom. The superimposed �nal deformed con�gurations for the continuum/�nite element
and atomistic calculations are reported for a compression of 10.35%. The characteristic system
of ‘�ns’ described in the literature [1], i.e. perpendicular 
attenings of the tube, are clearly
visible. The morphological agreement between the continuum and the atomistic simulations
is remarkable, and the deformed membrane nearly coincides exactly with the positions of the
nuclei provided by the atomistic calculation. Figure 6(b) presents the evolution of the internal
or binding energy of the system as a function of the compression. For reference, the Terso�–
Brenner potential predicts a ground energy for graphene of Egraphene =−7:3756eV=atom. Before
the buckles form, the energy displays a nearly quadratic growth. In this stage, the energies
provided by the two methods are undistinguishable (comparable to the minimization tolerance).
Note that the energy evolution is matched in absolute terms; for the comparison, neither of the
curves has been shifted vertically. The buckling load is correctly predicted by the continuum
simulation. After buckling, the energy grows nearly linearly. In this regime, characterized by
very large local deformations, the continuum approach is also accurate; the error in the last
reported step is 4% (this percentage, as all results reported subsequently, is relative to the
strain energy variation, i.e. energy at the observation point minus the initial energy).
This plot also reports the evolution of the strain energy for the continuum model, without

the inner displacement relaxation, in order to illustrate its crucial role in the correct modelling
of the elasticity of nanotubes. It can be observed that the errors are considerable; before
buckling occurs, the strain energy is over-estimated by 60%, and at the end by about 20%.
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Figure 7. Compressed 8.7 nm long (18,0) nanotube: unphysical deformations obtained with
the standard Cauchy–Born rule for coarse (a), regular (b), and �ne (c) meshes, (d) strain
energy evolution for the atomistic model (—) and for the continuum simulation based on the
standard Cauchy–Born rule for the coarse ( ), the regular ( ◦ ), and the �ne (•) meshes.

The buckling point is severely under-estimated in the absence of the internal relaxation. In
some cases, even the deformation modes are not correctly predicted without the internal
relaxation.
This simulation provides a stringent test for the continuum theory since it concerns a very

small nanotube, only a few atoms in diameter, which is severely deformed with local radii
of curvature that approach the bond length. From a practical point of view, the continuum
formulation is aimed at larger or longer nanotubes, for which it provides signi�cant computa-
tional savings, as illustrated later. Nevertheless, an attractive attribute of this model is its good
performance even for such severe deformations, even when the scale of the �nite elements is
comparable to the scale of the bond lengths.

5.2. Results with the standard Cauchy–Born rule

This excellent behaviour contrasts with a continuum membrane model directly constructed
from the standard Cauchy–Born rule without the exponential extension given in Reference
[44]. As discussed in Reference [44], the energy of a membrane model based on the stan-
dard Cauchy–Born rule is invariant under isometric deformations (deformations that keep C
unchanged, i.e. bending without stretch). Thus, this energy does not depend on the curva-
ture of the membrane, and the model has zero bending sti�ness. This non-convexity of the
hyperelastic potential manifests itself as a pathological mesh dependency. Because of the �-
nite dimension of the discrete FE space, and fact that the boundary conditions may not be
compatible with an isometric deformation, the numerical method still �nds a solution which
minimizes the total discrete energy �[�h]. Nevertheless, as the mesh is re�ned, the numerical
method selects solutions with increasingly �ner features.
Figure 7 illustrates this behaviour for the compressed nanotube of the previous example.

The results are provided for three meshes, consisting of 820, 1830, and 3240 nodes. As
the mesh is re�ned, the numerical solution is able to develop �ner folds, and accommodate
the deformation nearly isometrically. These solutions do not correspond to the behaviour of
the compressed carbon nanotube depicted in Figure 6. This mesh dependency can also be
observed in the energy evolution. It can be observed that as the mesh is re�ned, the increase
of energy during the deformation almost vanishes. The energy evolution for the atomistic
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Figure 8. Bent 12.56 nm long (10; 10), (15; 15) two-walled nanotube: (a) super-
imposed deformed con�gurations for atomistic (black spheres, and solid lines) and
�nite element (translucent grey surface) calculations; and (b) strain and non-bonded
energy evolution for the atomistic model (—) and for the continuum simulation (•).

system is provided to highlight these unphysical results. These phenomena are reminiscent of
the response of materials for which the strain energy density is physically non-convex (e.g.
martensitic materials or nematic elastomers), which develop microstructures with increasingly
�ne features in the process of energy minimization [62, 63].

5.3. Bent (10, 10), (15, 15) two-walled nanotube

Next, we describe an example in which the non-bonded interactions are critical. A two-
walled nanotube is bent by rotating each end by 20◦ in opposite directions with respect to
an axis perpendicular to the axis of the undeformed nanotube, and passing through its centre.
At an angle near 9◦, a single buckle forms in the centre of the two-walled nanotube. The
nanotubes are chosen so that initially, their walls are at approximately the van der Waals
equilibrium distance. Figure 8 reports the deformed con�gurations for the atomistic and the
continuum/�nite element models at the end of the simulation, with a side and a top view of
the buckle. To facilitate the visualization, the continuum solution is displayed as a translucent
grey surface. The atomistic model is displayed by black spheres for the outer tube and solid
lines for the bonds of the inner tube. It can be observed that the outer tube displays a
sharper kink than the inner tube, in agreement with reported experimental observations and
atomistic calculations [8]. Again, the agreement between the two models, despite the very
large, localized deformations, is remarkable. The evolution of the deformation energy is also
very well predicted, again in absolute terms, with perfect matching in the quadratic regime,
and only slight discrepancies later. At the �nal stage, the error is about 6%. The evolution of
the non-bonded energy as a function of the bending angle is also provided, and the agreement
is excellent, which demonstrates the accuracy of the continuum version of these interactions.
The buckling angle can be identi�ed in this plot as a sharp increase of the non-bonded
energy, probably due to the compression between the walls of the nanotubes at the buckle.
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Figure 9. Twisted 25:11nm long (10,10) nanotube: super-imposed deformed con�gura-
tions at three twisting angles for atomistic calculation (black spheres) and continuum

�nite element calculation (grey surface).
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Figure 10. Twisted 25:11 nm long (10,10) nanotube: (a) comparison of the strain
energy as a function of the twisting angle for atomistic calculation (—), and contin-
uum/FE calculation (•), and strain energy density evolution if the non-bonded inter-
actions are ignored (- - -); and (b) comparison of the non-bonded energy evolution

for atomistic calculation (—) and continuum/FE calculation (•).

Note that the change of non-bonded energy is much smaller than the change of strain energy.
Nevertheless, the non-bonded interactions determine the morphology of the buckle, and inter-
penetration of the walls of the two nanotubes will occur in their absence. In this example,
both models have around 15 000 degrees of freedom, and the computation time is two times
longer for the continuum/�nite element approach. The objective of this example is not to
demonstrate the computational savings that the continuum model can provide, but rather to
show its accuracy for highly strained multi-walled nanotubes.

5.4. Twisted (10,10) nanotube

In this example, a (10,10) nanotube 25 nm long is twisted by rotating its ends in opposite
directions with respect to the axis of the tube. Three representative snapshots of the defor-
mation process are shown in Figure 9. The evolution of the strain energy is presented for
both the atomistic and the continuum/�nite element calculations in Figure 10. The strain en-
ergy evolution if the non-bonded interactions are not included is also reported in this �gure
(dashed line). The evolution of the non-bonded energy is also presented. This example exhibits
two structural instabilities. In the �rst one, a non-uniform deformation mode develops for
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Table I. Twisted 25:11 nm long (10,10) nanotube: error of the
four considered �nite element models at two twisting angles.

Coarse Medium Fine Super �ne
(%) (%) (%) (%)

220◦ 1.1 0.39 0.37 0.29
300◦ 7.4 3.6 2.3 1.5

a twisting angle at each end of about 50◦. The onset of this instability is evident in the �rst
snapshot of the deformation in Figure 9, and can be identi�ed in the strain energy evolution
as the kink that ends the nearly quadratic regime. As loading proceeds, the wall of the tube
comes into van der Waals contact with itself and adhesion energy is gained. Then, the van der
Waals interactions harden the twisting response of the tube. This can be noticed by observing
the deviation between the response with (solid) and without (dashed) non-bonded interactions.
The dashed line demonstrates the fundamental e�ect on the global response of these inter-

actions, despite being less than 2% of the total energy change. The second kink in the strain
energy evolution, near 230◦, indicates the development of a secondary structure. After this
point, the 
attened twisted ribbon folds onto itself. The snapshots demonstrate that, even for
these intricate deformed morphologies, the continuum mechanics theory is surprisingly accu-
rate, and the �nite element model remarkably �ts the atomic positions. When it comes to the
energetics, the agreement is also excellent, both for the strain and the non-bonded energies
(note that the discrepancy in the non-bonded interactions at 300◦ is only 0.1% of the total
energy variation).
This analysis has been performed with four di�erent meshes, a coarse one with 6666 degrees

of freedom and 22 elements in the perimeter, a medium one with 10 164 degrees of freedom
and 28 elements in the perimeter, a �ne one with 16 520 degrees of freedom and 32 elements
in the perimeter, and a super-�ne mesh with over 30 000 degrees of freedom. The atomistic
system has 12 000 degrees of freedom. The results reported above are for the medium mesh.
The relative errors of the �nite element models before the second instability (220◦) and at
the end of the analysis (300◦) are reported in Table I. Note that this error includes both the
�nite element approximation error, and the continuum modelling error. The table shows that
the �nite element solution at 220◦ is excellent, even for the coarse mesh. After the second
instability, the severe deformation makes the analysis with the coarse mesh less accurate. It
is observed that mesh re�nement reduces the errors.
This simulation suggests that local deformation features do not necessarily require coupling

with atomistic calculations, and simple mesh re�nement is su�cient to obtain accurate solu-
tions, as indicated in the table. Of course, from a practical point of view, it makes little sense
to model an atomistic system with an approximate �nite element model with more degrees
of freedom. As shown in the next example, accurate computations of larger tubes, which
typically display deformation features that are larger relative to the bond length, require �nite
element models with far fewer degrees of freedom than the atomistic model.

5.5. Twisted (30,30) nanotube

In example, a larger (30,30) nanotube is twisted until the tube 
attens and folds onto itself.
Figure 11 shows the superimposed deformations for the atomistic and the continuum/�nite
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Figure 11. Twisted 37.67 nm long (30,30) nanotube: comparison between the atom-
istic model and the continuum/�nite element model for two twisting angles: (a) su-
per-imposed deformed con�gurations for atomistic (black spheres) and �nite element
(grey surface) calculations; and (b) map of the strain energy density on the �nite

element computational mesh (red is high, blue is low).

element calculations at two twisting angles. As before, the atoms coincide with the continuum
membrane. The map of the strain energy density on the computational �nite element mesh is
also shown. It can be observed that the severely bent areas display high strain energy. In this
case, the atomistic system has 54 000 degrees of freedom while the continuum/�nite element
model only 5070. The computational time with the continuum/�nite element approach is seven
times smaller than with the full atomistic calculation. This fast �nite element calculation
provides an accurate solution within 0.8% in strain energy for the �rst reported twisting
angle, and within 5% for the �nal angle. Again, a �nite element model with a �ner mesh of
9696 degrees of freedom (three times faster than the atomistic simulation) reduces the error
at 75◦ below 1.3%.

6. LARGE-SCALE EXAMPLES

This section describes some examples of the bending of multi-walled carbon nanotubes (nested
tubes in van der Waals contact). In these examples consisting of up to millions of atoms, the
�nite element model bene�ts from the fact that the element sizes can be chosen irrespective of
the atomic spacing. Consequently, the computational cost is greatly reduced. These calculations
are performed with a parallel implementation of the method. The parallelization is performed
on the calculation of the energy and the forces, since most of the CPU time is spent in these
operations, and not in the minimization algorithm. For the larger examples of Section 6.2, up
to 20 processors have been used at 80% e�ciency.

6.1. Bent 5-walled nanotube

There have been numerous experimental observations of bent CNTs displaying distinct kinks
or localized buckles (see Section 5.3). For example in Reference [8], a series of TEM (trans-
mission electron microscope) images of bent and buckled single and multi-walled carbon
nanotubes were presented. These experiments showed bent 5-walled nanotubes displaying sin-
gle kinks, as well as patterns of double kinks. We present a series of calculations which predict
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not only the one and two kink patterns, but also a three kink pattern. Systems of consecutive
kinks in multi-walled hollow carbon nanotubes have been reported in Reference [64].
In the continuum/�nite element calculations, a 5-walled (23,23) (28,28) (33,33) (38,38)

(43,43) multi-walled nanotube whose dimensions match those of the experiments is considered.
The corresponding atomistic system for a 35 nm long nanotube has about 276 000 degrees of
freedom, while the �nite element model has 20 000.
For this larger nanotube, the �rst kink forms when both ends of the nanotube are rotated

only 5◦. For moderate bending angles, until 18◦, this is the only deformation mode observed.
For larger bending angles, depending on slight perturbations of computational parameters
such as the number of load steps or the minimization tolerances, two equilibrium paths can
be distinguished. A series of calculations can be qualitatively classi�ed as following path A,
or path B (see Figure 12). Path A is characterized by a system of three buckles, while path B
displays only two. The �gure shows three-dimensional images of the numerical deformations,
as well as longitudinal sections. The sections are particularly useful since they reveal the
internal structure of the deformation, and they are the numerical analogs of the experimental
TEM slices. Cross-sections are also provided for the last con�guration of each path, and are
marked by thick lines in the longitudinal sections.
These simulations exemplify a feature of large multi-walled CNTs which we expect also

in other crystalline sheets: the existence of multiple equilibrium con�gurations with very
di�erent shapes, which nevertheless are nearly indistinguishable from the energetic point of
view. Here, path B is slightly energetically favorable. Another characteristic feature of larger
CNTs is that they rarely display sharp transitions in the energy evolution; the characteristic
quadratic-linear sudden transition observed for the energy evolution of smaller nanotubes in
the previous sections is not present here. Indeed, while for unbuckled structures the energy
growth with deformation is roughly quadratic, the behaviour of the buckled structures is
strongly constrained by van der Waals interactions. This constraint on the kinks causes a
sti�ening e�ect clearly observed in the energy evolution.
In addition to the energetics, the simulations also provide a three-dimensional picture of

the deformation, unlike TEM which provides ‘slices’. This makes the interpretation of experi-
mental observations much easier and complete. For instance, atomistic simulations of bending
found in the literature typically involve small nanotubes, which develop kinks with a sim-
ple structure [8]. See also Section 5.3 for an illustration. As can be observed in Figure 12
from the longitudinal section for 18◦, one may be led to think that the 5-walled nanotube
displays the same simple structure. However, the three-dimensional picture reveals two other
systems of pairs of buckles tilted in the transverse direction. Actually, the simulation shows
that between two simple buckles there is always a pair of tilted buckles, and vice versa. The
transverse structure of these types of buckles can observed in the cross-sections of the �nal
con�gurations. These cross sections also show that the inner-wall delamination, which can be
observed both in the experimental and the numerical slices, can be associated with transverse
buckles. This alternation of simple centered buckles and pairs of tilted buckles is even more
apparent in the following example.

6.2. Thirty four-walled nanotube

We next present calculations of a 34-walled 124 nm long MWCNT containing six million
atoms. A ‘converged’ �nite element analysis requires 100 000 nodes. The ‘rippling’ e�ect
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Figure 12. Bending of a 5-walled carbon nanotube, inspired in the
experiments by Iijima et al. [8].

observed in experiments [65, 66] is reproduced as shown in Figure 13. This nanotube is similar
to that reported in Reference [65]. The numerical results show good agreement, for instance
in the periodicity of the ripples, although the experimental image seems to indicate that the
nanotube is not uniformly bent. The images reported in Reference [66] display smoother
ripples, similar to these in our simulations. As before, the calculations provide also the three-
dimensional picture (see Figure 14), and reveal a feature not apparent from the experimental
TEM images: the deformation is a complex pattern of intercalated buckles in tilted orientations,
reminiscent of the Yoshimura pattern [67]. This phenomenon, also predicted in torsion, has
implications in the analysis and design of nanoevices. See Reference [24] for further details
about the non-linear mechanical response and rippling of thick MWCNTs.

7. SUMMARY AND CONCLUSIONS

The theory and �nite element implementation of a continuum surface model for crystalline
monolayers has been presented, and tested against atomistic calculations. The membrane con-
stitutive model is strictly based on the interatomic potential (here the Terso�–Brenner po-
tential). The theory is strictly framed within continuum mechanics, with a closed-form ex-
pression for the elastic potential in terms of continuum strain measures; it does not require
constrained atomistic calculations. The last point is of particular importance, since it allows for
(semi-)analytical treatments in some situations of interest, as described in References [23, 50].
The proposed theory, like other crystal elasticity theories, accounts for the crystallography of
the underlying lattice, in particular for the chirality of nanotubes, and treats consistently the
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Figure 13. Rippling of a 34-walled carbon nanotube: (a) comparison with experimen-
tal observation (reprinted with permission from Kuzumaki et al. [65] Taylor & Fran-
cis Ltd., http://www.tandf.co.uk/journals/titles/14786435.html); (b) side-section;
(c) cross-sections of the simulation; and (d) experiment on larger MWCNT (reprinted
with permission from Poncharal et al. [66]. Copyright 1999 American Association for the

Advancement of Science http://www.sciencemag.org).

Figure 14. Rippling of a 34-walled carbon nanotube: three-dimensional picture.

inner elasticity of the non-primitive graphene lattice. A continuum version of the non-bonded
interactions, crucial in the mechanics at the nanoscale, is provided.
The coarse-grained calculations have been shown to reproduce accurately the full non-

linear mechanics of the parent atomistic system. Our simulations suggest that, in the absence
of lattice defects or bond rearrangements, it is possible to accurately describe the non-linear
mechanics of carbon nanotubes and other crystalline sheets with exclusively continuum �nite
element calculations, without any recourse to atomistic calculations. Although this may seem
surprising, experimental observations and atomistic simulations of nanotubes in general display
smooth deformations (notable exceptions are experimentally observed fracture, and simulated
plasticity). These observations can be interpreted as evidence that, as long as the integrity
of the lattice is maintained, the mechanical response of carbon nanotubes depends on the
atomistic arrangements only through the elasticity of the curved monolayer lattice (the scale of
the bond length and that of the overall deformation are well separated). Given the celebrated
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resilience of the carbon network in graphene, our method seems to have a wide range of
practical applicability, particularly in the design and analysis of nanotube devices in which
only reversible deformations are expected. The �nite element calculations allow for accurate
simulations at a fraction of the computational cost of conventional atomistic calculations. Note
that all of the �nite element calculations presented here are performed with uniform meshes.
As we have seen, these calculations provide very accurate results for moderate deformations
and coarse meshes, but �ner meshes are required when the deformations are severe. One of
the major advantages of the continuum-based simulations is that the mesh can be tailored to
the problem under consideration through adaptive mesh re�nement. Furthermore, the mesh
can be changed during the analysis very easily since the model is hyperelastic. Thus, the
proposed continuum model allows to exploit �nite element methods such as adaptivity, which
can further reduce the computational cost by orders of magnitude.
Although we have focused on nanoscale applications, these methods are also applicable to

lattices on the macroscale. The essential feature of the method is that it relates the deformation
of a discrete lattice to that of a membrane with 
exural sti�ness. If the deformation energy
of the discrete system can be expressed in terms of the geometry of the deformed lattice (e.g.
the elongation of its elements, the angles between elements), then these methods can be used
at any scale.

APPENDIX A: ASPECTS OF THE CONSTITUTIVE MODEL
FOR CARBON NANOTUBES

A.1. Principal curvatures and directions

The eigenvalues of the generalized eigenvalue problem (15) are the principal curvatures of
the surface �. They can be easily obtained [48] from the Gaussian curvature

K =
det[K]B0

det[C]B0

=
K11K22 −K2

12

C11C22 − C212
(A1)

and the mean curvature

H =
1
2
trace ([C]−1B0

[K]B0)=
1
2
K11C22 − 2K12C12 +K22C11

C11C22 − C212
(A2)

The principal curvatures can then be written as

k1;2 =H ±
√
H 2 − K (A3)

The two C-orthonormal principal directions V1 and V2 are straight-forward to obtain.
The derivatives of kn and Vn with respect to C and K can be obtained from standard

formulas [68], valid for the case in which k1 	= k2. For the principal curvatures, we have
@kn
@K

=Vn ⊗Vn; or
@kn
@KAB

=(Vn)A(Vn)B; n=1; 2 (A4)

and

@kn
@C

= − kn @kn@K
; n=1; 2 (A5)
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Introducing the symbol ⊗symm denoting the symmetrized tensor product, i.e.
A ⊗symm B= 1

2(A ⊗ B+ B⊗A) (A6)

the derivatives of the principal directions can be obtained as

@Vn
@K

=
1

(kn − km) Vm ⊗ (Vn ⊗symm Vm) (A7)

or

@(Vn)A

@KBC
=

1
2(kn − km) (Vm)

A[(Vn)B(Vm)C + (Vm)B(Vn)C] (A8)

and

@Vn
@C

= − 1
2
Vn ⊗Vn ⊗Vn − kn @Vn@K

(A9)

for n=1; 2 and where {n;m} is a permutation of {1; 2}.
For repeated eigenvalues, the procedure for di�erentiating the eigenvalues and eigenvectors

becomes cumbersome [69]. In computations, this rarely occurs, and our experience indicates
that numerical di�erentiation is a simple and robust alternative to compute the stresses at a
particular quadrature point for which

√
H 2 − K ¡ Tol. Thus, in this case, the derivatives of

kn and Vn are not needed.

A.2. Inner relaxation

In the present Appendix, intrinsic notation is used, although in the computations, all the
vectors and tensors are expressed in the Euclidean basis B0. Here, (·);W denotes @(·)=@W and
(·);WW denotes @2(·)=@W2.

A.2.1. Newton’s method iterations. The inner relaxation in Equation (29) is performed using
Newton’s method, by solving at each quadrature point the system of two non-linear algebraic
equations which ensure internal equilibrium:

W;W= 0 (A10)

for �xed C and K. The algorithm can be summarized as

• Initialize W0 as the last converged inner displacement in the previous energy evaluation
• DO WHILE (‖rk‖¿ Tol1.OR. ‖�Wk‖¿ Tol2 )

◦ Compute the residual rk =W;W(Wk)
◦ Compute the Jacobian matrix Jk =W;WW(Wk)
◦ �Wk = − (Jk)−1rk
◦ Wk+1 = Wk +�Wk
◦ k ← k + 1

• Check W (Wk) is a minimum, i.e. det Jk¿0
• Ŵ =W (Wk) and Ŵ= Wk
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Although no result on the convexity of W as a function of W is known to us, numerical
experience indicates that for graphene and the Terso�–Brenner potential, the inner relaxation
always converges to a minimum within machine precision in two or three Newton iterations.

A.2.2. Inner forces and inner elastic constants. The residual r=W;W and the Jacobian J=W;WW
can be interpreted as inner out-of-balance forces and inner elastic constants [38]. This Section
provides details for their calculation. To keep the expressions compact, let us de�ne an array of
bond lengths and angles for the three inequivalent bonds of graphene p=[a1; a2; a3; �1; �2; �3],
and let pi (i=1; 6) denote the ith entry of this array.
As for the inner out-of-balance forces, applying the chain rule and recalling Equation (28),

we have

W;W=
6∑
i=1

@W
@pi

pi;W (A11)

On the other hand, the inner elastic constants can be written in the following manner, which
highlights the symmetry:

W;WW =
6∑
i=1

{
@W
@pi

pi;WW +
@2W
@(pi)2

pi;W ⊗ pi;W +
∑

i¡j66
2
@2W
@pi@pj

pi;W ⊗symm pj;W
}

(A12)

Note that depending on the interatomic potential, some entries of @2W=@pi@pj may be zero.
For instance, for the Terso�–Brenner potential @2W=@ai@�i ≡ 0; i=1; 3.

A.2.3. Derivatives of pi with respect to the inner displacements. Let us introduce the fol-
lowing notation for n=1; 2:

Qn =Q(knwn); Q′
n=Q′(knwn); Q′′

n =Q′′(knwn)

Qn2 =Q(knwn=2); Q′
n2 =Q′(knwn=2); Q′′

n2 =Q′′(knwn=2)
(A13)

The calculation of the function Q(x) and its derivatives is described in Appendix A.4. From
Equation (20), the derivative of the deformed bond vector a expressed in the auxiliary
orthonormal basis described previously can be written as

@[a]B̃
@W =



a1;W

a2;W

a3;W


 =




(Q1 + k1w1Q′
1)w

1
;W

(Q2 + k2w2Q′
2)w

2
;W

k1w1Q12

(
Q12 +

k1w1

2
Q′
12

)
w1;W + · · ·

k2w2Q22

(
Q22 +

k2w2

2
Q′
22

)
w2;W




(A14)

where it can be readily seen that

wn;W=CVn; n=1; 2 (A15)
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Note that these formulas can be applied to each undeformed lattice vector Ai ; i=1; 2; 3, and
that the derivative in Equation (A15) is independent of the particular undeformed lattice vector
considered, unlike wn (see Equation (19)).
With these expressions, the derivatives of the deformed bond lengths and angles with respect

to W can be computed for i=1; 2; 3 as

ai;W=
1
ai
(ai)c(ai)c;W and �i;W=

−1
sin �i

(cos �i);W (A16)

where

(cos �i);W=
1
ajak
{(aj)c(ak)c;W + (ak)c(aj)c;W − cos �i[ajak;W + akaj;W]} (A17)

and {i; j; k} is an even permutation of {1; 2; 3}. Note that ai denotes the length of the ith bond
vector, while (ai)c denotes the cth component of the ith bond vector, and that according to
the conventions stated in Section 2, summation on the index c is implied.

A.2.4. Second derivatives of pi with respect to the inner displacements. Since wn;WW ≡ 0, the
second derivative of the deformed bond vector a with respect to the inner displacements is:

@2[a]B̃
@W2 =




k1(2Q′
1 + k1w

1Q′′
1 )w

1
;W ⊗ w1;W

k2(2Q′
2 + k2w

2Q′′
2 )w

2
;W ⊗ w2;W

k1

[(
Q12 +

k1w1

2
Q′
12

)2
+ k1w1Q12

(
Q′
12 +

k1w1

4
Q′′
12

)]
w1;W ⊗ w1;W + · · ·

k2

[(
Q22 +

k2w2

2
Q′
22

)2
+ k2w2Q22

(
Q′
22 +

k2w2

4
Q′′
22

)]
w2;W ⊗ w2;W




(A18)

The second derivative of the bond lengths is then

ai;WW=
1
ai
[(ai)c;W ⊗ (ai)c;W + (ai)c(ai)c;WW − ai;W ⊗ ai;W]; i=1; 2; 3 (A19)

For the angles, we have

�i;WW=
−1
sin �i

[(cos �i);WW + (cos �i)�i;W ⊗ �i;W] (A20)

for i=1; 2; 3. The second derivative of the cosine reads

(cos �i);WW =
1
ajak

[(〈aj | ak〉);WW − 2(cos �i);W ⊗symm (ajak;W + akaj;W)

− cos �i(ajak;WW + akaj;WW + 2aj;W ⊗symm ak;W)] (A21)

where

(〈aj | ak〉);WW=(aj)c(ak)c;WW + (ak)c(aj)c;WW + 2(aj)c;W ⊗symm (ak)c;W (A22)

and {i; j; k} is an even permutation of {1; 2; 3}.
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A.3. Derivatives of ai and �i with respect to the strain measures

The present appendix describes the calculation of the derivatives of the derived strain measures
ai and �i with respect to the strain measures C and K. Recall that in Appendix A.1 the
derivatives of the principal curvatures and directions with respect to the strain measures were
presented. These results are required in the formulas below.
It can be shown that

@wn

@C
=CABAA

@(Vn)B

@C
+A ⊗symm Vn and

@wn

@K
=CABAA

@(Vn)B

@K
(A23)

for n=1; 2. Then, for the deformed bond vector we have

@[a]B̃
@• =




Q1
@w1

@• + w
1Q′

1

(
w1
@k1
@• + k1

@w1

@•
)

Q2
@w2

@• + w
2Q′

2

(
w2
@k2
@• + k2

@w2

@•
)

1
2

[
w1Q212

(
w1
@k1
@• + 2k1

@w1

@•
)
+ k1(w1)2Q12Q′

12

(
w1
@k1
@• + k1

@w1

@•
)
+ · · ·

w2Q222

(
w2
@k2
@• + 2k2

@w2

@•
)
+ k2(w2)2Q22Q′

22

(
w2
@k2
@• + k2

@w2

@•
)]




(A24)

where • denotes either C or K. Finally, similarly to the case of the derivatives with respect
to the inner displacements, we have for each bond vector and angle i=1; 2; 3

@ai
@• =

1
ai
(ai)c

@(ai)c

@• (A25)

and

@�i
@• =

−1
sin �iajak

{
(aj)c

@(ak)c

@• + (ak)c
@(aj)c

@• − cos �i
[
aj
@ak
@• + ak

@aj
@•
]}

(A26)

where {i; j; k} is an even permutation of {1; 2; 3}.

A.4. Calculation of Q(x);Q′(x) and Q′′(x)

The calculation of the functions

Q(x)=
sin x
x
; Q′(x)=

cos x − Q(x)
x

and Q′′(x)= − sin x + 2Q
′(x)

x
(A27)

must be performed with care when x�1 to prevent numerical roundo� errors. Note that the
limits of the above functions when x → 0 exist, and therefore they can be extended by
continuity at x=0 (Q(0)=1;Q′(0)=0 and Q′′(0)= − 1=3). This situation occurs when one
of the principal curvatures is zero, for instance when the deformed body is a cylinder. In
the computer implementation, these functions are evaluated by a tenth order Taylor series
expansion, which is very accurate for the range of �nite values of x encountered in the
calculations, and faster to evaluate than the trigonometric functions.
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APPENDIX B: VARIATIONS OF THE STRAIN MEASURES

B.1. Continuum problem

The variations of the strain measures �C and �K corresponding to �� are describes next.
Since the undeformed con�guration is �xed, we have ��= �’ ◦’0. For this reason, we will
express �C and �K in terms of the variations of the deformed con�guration ’.
Recalling Equations (2) and (7), we have

�g��=(g�)a
@(�’)a

@��
+
@(�’)b

@��
(g�)b (B1)

and from Equation (9), the variation of the Green deformation tensor can be written as

�CAB=(T’−1
0 )

�
A(T’

−1
0 )

�
A�g�� (B2)

For the curvature, it follows from Equation (12) that

�k��=(�n)a(g�;�)a + nb
@2(�’)b

@��@��
(B3)

where

�n=
1

‖g1×g2‖
[
@(��)
@�1

×g2 + g1×@(��)@�2
− �‖g1×g2‖n

]
(B4)

and noting that ‖g1×g2‖2 = det(g��)= g11 g22 − g212, it follows:

�‖g1×g2‖= 1
2‖g1×g2‖ (�g11g22 + g11�g22 − 2g12�g12) (B5)

Finally, the variation of the pull-back of the curvature tensor is

�KAB=(T’−1
0 )

�
A(T’

−1
0 )

�
B�k�� (B6)

B.2. Discrete problem

The analogues of the variations of the strain measures in the discrete �nite element problem
are the derivatives of the strain measures with respect to the degrees of freedom. These are
needed in the calculation of the internal forces, see Section 4.2. It follows from Equations
(7) and (2) that

@g��
@�eI

=NI;� g� + NI;� g� (B7)

Then, from Equations (9) and (48), the derivatives of the Green deformation tensor with
respect to the nodal degrees of freedom can be written as

@CAB
@�eI

=[(T’e0)
−1]� A[(T’

e
0)

−1]�B
@g��
@�eI

(B8)
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For the covariant components of the curvature tensor de�ned in Equation (12), and recalling
Equation (47), we have

@k��
@�eI

=(g�;�)a
@na

@�eI
+ NI;�� n (B9)

where it can be readily seen from Equations (11) and (2) that

@na

@�eI
=

1
‖g1×g2‖

[
ia×(NI;2 g1 − NI;1 g2)− na @‖g1×g2‖@�eI

]
(B10)

and, as for Equation (B5), we have

@‖g1×g2‖
@�eI

=
1

‖g1×g2‖ [(NI;1 g22 − NI;2 g12) g1 − (NI;1 g12 − NI;2 g11) g2] (B11)

The �nal result for the components of the pull-back of the curvature tensor is

@KAB

@�eI
=[(T’e0)

−1]� A[(T’
e
0)

−1]�B
@k��
@�eI

(B12)
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